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25 The ability of palaeontologists to correctly diagnose and classify new fossil species from 

26 incomplete morphological data is fundamental to our understanding of evolution. 

27 Different parts of the vertebrate skeleton have different likelihoods of fossil 

28 preservation and varying amounts of taxonomic information, which could bias our 

29 interpretations of fossil material. Substantial previous research has focused on the 

30 diversity and macroevolution of non-avian theropod dinosaurs. Theropods provide a 

31 rich dataset for analysis of the interactions between taxonomic diagnosability and fossil 

32 preservation. We use specimen data and formal taxonomic diagnoses to create a new 

33 metric, the Likelihood of Diagnosis (LoD), which quantifies the diagnostic likelihood of 

34 fossil species in relation to bone preservation potential. We use this to assess whether a 

35 taxonomic identification bias impacts the non-avian theropod fossil record. We find the 

36 patterns of differential species abundance and clade diversity are not a consequence of 

37 their relative diagnosability. Although there are other factors that bias the theropod 

38 fossil record, that are not investigated here, our results suggest patterns of relative 

39 abundance and diversity for theropods might be more representative of Mesozoic 

40 ecology than often considered. 

41
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50 1. Introduction

51 In order to understand past ecology and key evolutionary changes, palaeontologists must be 

52 able to correctly estimate relative or absolute species abundance and diversity [1]. The 

53 imperfection of the fossil record means spatial, temporal and sampling biases [2–9] likely 

54 limit our understanding, with many recent studies attempting to understand connections 

55 between apparent biological patterns and biases [10–17], and quantify the level of ‘missing’ 

56 information in the fossil record [18–26]. However, a critical but less examined factor 

57 influencing interpretations is our ability to correctly identify fossil species [27–33]. In the 

58 tetrapod fossil record, inconsistent fossilisation not only occurs on large spatial and temporal 

59 scales, but also across the individual bones of the skeleton. Furthermore, unique characters 

60 diagnosing species or wider clades (autapomorphies and synapomorphies) are also 

61 differentially distributed across the skeleton depending on the individual species or 

62 taxonomic group. Therefore, if the diagnostic characters of a particular taxonomic group are 

63 present on bones that are commonly preserved in the fossil record, palaeontologists should be 

64 able to more readily identify those fossils and distinguish species. The variable likelihood of 

65 preservation of individual bones and the variable distribution of taxonomically-informative 

66 characters across the skeleton could therefore play pivotal roles in estimates of past 

67 abundance and diversity. 

68 Here, we investigate whether a taxonomic identification bias is present in non-avian 

69 theropod dinosaurs. Theropods are one of the most intensively studied groups of fossil 

70 vertebrates [34–36], with substantial interest in their macroevolutionary patterns [2,6,8,11–

71 13,15,17,37–44], and they provide a rich source of data to explore connections between fossil 

72 preservation and taxonomic diagnosability. Due to the abundant identification of fossils of 

73 some individual species, for example Allosaurus fragilis in the Morrison Formation [e.g., 45–

74 46], we hypothesise that certain theropod subgroups are ‘easier’ to identify than others due to 
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75 fortunate combinations of bone preservation potential and distribution of diagnostic 

76 characters across the skeleton, leading to higher quantities of discoveries. We exclusively test 

77 for this potential bias on a global scale by quantifying the diagnostic quality of the fossil 

78 material of each theropod species and statistically comparing this to estimates of abundance 

79 at different taxonomic and spatiotemporal scales. 

80

81 2. Materials and methods

82 (a) Likelihood of Diagnosis (LoD) metric

83 We updated (August 2020) an existing skeletal completeness dataset [25] to obtain 

84 presence/absence data for each individual skeletal element (elements occurring within series 

85 (e.g., teeth, vertebrae, ribs, digits) were treated as one individual element; see electronic 

86 supplementary material) of all published non-avian theropod species (except those known 

87 only from isolated teeth [32]), and 69 unnamed, but phylogenetically informative, specimens 

88 previously included in cladistic analyses [47]. The total number of occurrences of each 

89 skeletal element was then calculated from all theropod specimens, and the relative proportion 

90 which that element made up of all known theropod elements was used as its ‘global’ 

91 preservation potential (figure 1) (see electronic supplementary material, ‘Supplementary 

92 methodology’ for data limitations). 

93 Taxonomic diagnoses within the published literature define the most distinguishing 

94 features of fossil species in an easily accessible format. From these diagnostic summaries we 

95 gathered the number of autapomorphies identified for each skeletal element for all valid 

96 theropod species (see ‘Theropod_Diagnoses_data’ [47]) (figure 1). All plesiomorphic, 

97 synapomorphic and differential diagnostic references to individual elements were ignored, 

98 but ‘unique combinations’ of characters were included. The total ‘unique combination’ of 

99 characters was regarded as equivalent to a single autapomorphy. Therefore, for each species 
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100 with such diagnoses, the individual characters were scored as a proportion of the sum of all 

101 the characters (i.e., for a ‘unique combination’ of four characters, each character represents 

102 25% of an autapomorphy) [47]. We incorporated diagnoses from formal systematic 

103 palaeontology sections, and only included data from post-1980 diagnoses, because, generally, 

104 before this time autapomorphies were not explicitly defined in diagnoses. Unique characters 

105 referring to entire body partitions (e.g., skull length), integument, fenestrae with contacts with 

106 multiple elements, or the association of multiple elements (e.g., measurement ratios between 

107 two bones) could not be assigned to specific elements and were therefore excluded (see 

108 electronic supplementary material, ‘Supplementary methodology’ for data limitations). 

109 For a given species, the number of unique characters (‘Ch’) assigned to each skeletal 

110 element was multiplied by the ‘global’ preservation potential (‘PP’) of each element, and the 

111 resulting scores were summed to produce a Likelihood of Diagnosis (LoD) score for that 

112 species (figure 1) (LoD=∑[Ch x PP]+…n). A high LoD means that a higher number of 

113 unique characters have been identified for a species and/or that identified autapomorphies are 

114 distributed on skeletal elements that are commonly preserved. 

115 To evaluate the likelihood of diagnosing all of the known species in a more inclusive 

116 grouping of data (i.e., taxonomic subgroup, geological formation, time bin), we calculated the 

117 mean LoD scores from constituent species. To ensure data was approximately normally 

118 distributed (electronic supplementary material, figure S1-S3) [47] and mean values not 

119 skewed by outliers, we logged the LoD scores prior to mean calculation. Species were split 

120 into major theropod subgroups following phylogenetic relationships used in Cashmore and 

121 Butler [25] (figure 2) (see electronic supplementary material, ‘theropod relationships’). For 

122 each subgroup we further calculated relative proportion of unique characters and relative 

123 proportion of skeletal element occurrences (figure 2; electronic supplementary material, table 

124 S1).
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125

126 (b) Abundance proxies

127 We calculated the minimum number of individuals (MNI) for each theropod species based on 

128 the number of duplicated elements associated with each species in our skeletal completeness 

129 dataset [47], cross-referenced with published literature. MNIs for taxonomic, geological 

130 formation and temporal groupings were summed from all known species (including species 

131 lacking ‘autapomorphic’ diagnoses) and indeterminate specimens, and ratios of MNI to valid 

132 species richness were also used as an abundance proxy [47]. 

133 We further calculated a number of abundance proxies from theropod data in the 

134 Paleobiology Database (PBDB) (https://paleobiodb.org) (downloaded on 07/07/20). For each 

135 valid species we calculated the number of occurrences and individuals and the ratio of 

136 individuals to unique localities (i.e., collections) [47]. The same proxies were calculated for 

137 each taxonomic subgroup, formation and time bin, but these also included specimens only 

138 identified to higher taxonomic levels (e.g., Tyrannosauridae indet.) [47]. Additionally, for 

139 each grouping we calculated the ratio of individuals per species, and species and individuals 

140 per locality, as other potentially informative abundance proxies.  

141

142 (c) Statistical tests

143 For each species we statistically compared the LoD scores with their MNI, across all 

144 theropods, and within each subgroup, Mesozoic stage, and within each of the five most 

145 species-rich geological formations. The species-level PBDB abundance proxies were solely 

146 compared across all Theropoda. Across all taxonomic subgroups, formations and time bins, 

147 mean logged LoD scores were statistically compared to species richness, summed MNI and 

148 PBDB subgroup abundance proxies. Stage-level time bins were chosen as most Mesozoic 

149 stratigraphic data are not well constrained to finer scales. Minimum and maximum stage 
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150 dates were determined from Walker et al. [48]. Species that were present over multiple 

151 geological stages, or have an uncertain stratigraphic age, were included in each stage in 

152 which they potentially were present. 

153 Generalized least-squares regression (GLS) was used for linear comparisons, 

154 implemented using the function gls() in the R package nlme [49]. A first order autoregressive 

155 model (corARMA) was applied to temporal data to reduce the chances of overestimating 

156 statistical significance due to autocorrelation. Prior to analysis, log-transformation was 

157 applied to ensure normality of residuals and homoscedasticity (constant variance). We further 

158 calculated a likelihood-ratio based pseudo-R2 value by using the function r.squaredLR() of 

159 the R package MuMIn [50]. 

160 R (v. 3.1) [51] was used to perform all statistical tests and initially create all plots. 

161 Radial plots were created with the package plotrix [52]. 

162

163 3. Results

164 Theropod skeletal regions with the highest preservation potential are the hind limb and 

165 vertebrae, with the caudal vertebrae, tibia, femur and metatarsals preserved most frequently. 

166 Most theropod diagnostic characters come from the skull, hind limb and vertebrae, with the 

167 maxilla, metatarsals, and cervical and caudal vertebrae the predominant contributors (figure 

168 2a; electronic supplementary material, table S1). 

169 We find no significant relationship between species LoD and MNI or any PBDB 

170 abundance proxy across all theropods (table 1), within each subgroup (figure 2b-r), each 

171 relevant geological formation, and time bin (electronic supplementary material, table S2-S4). 

172 Compsognathidae and Ornithomimosauria have the highest mean LoD score of all subgroups, 

173 whilst non-avian Paraves and Megalosauroidea have the lowest [47]. Temporal fluctuations 

174 in mean LoD are limited [47], but there is a very gentle rise through time after an initial 
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175 outlying peak in the Carnian. There are no significant relationships between mean LoD and 

176 species richness, MNI, or any PBDB abundance proxy across each subgroup (figure 2a; table 

177 1), across each formation or through geological time (table 2). 

178

179 4. Discussion

180 Our results suggest different theropod species and subgroups do have different chances of 

181 being correctly identified; however, statistical analyses suggest these differences have little 

182 impact on the relative abundance and diversity signals that we derive from the fossil record. 

183 Therefore, our understanding of the relative abundances of theropods within ecosystems, and 

184 the relative diversity of theropod subgroups to one another, may be better than pessimistic 

185 interpretations suggest [1,23,25,31]. This implies that these aspects of theropod diversity 

186 patterns outlined in many studies are at least moderately reliable for understanding theropod 

187 evolution. Nevertheless, various spatial and taphonomic factors still impact the theropod 

188 fossil record and perceived macroevolutionary signals. For example, specimens of 

189 Compsognathidae are almost entirely derived from localities of exceptional preservation, and 

190 as many of their diagnostic characters are attributed to the manus (figure 2; electronic 

191 supplementary material, table S1), which has only moderate preservation potential; it may 

192 therefore be relatively difficult to identify fragmentary material from other deposits. 

193 Allosauroidea and Tyrannosauroidea have strikingly higher proportions of diagnostic 

194 skull characters in comparison to other subgroups (figure 2) [53–54], the vast majority 

195 pertaining to the maxilla (electronic supplementary material, table S1). The identification of 

196 more diagnostic characters on that element may be a true biological signal reflecting strong 

197 cranial selection pressures [55–57], but could also be due to variable worker interpretation 

198 and potential over-atomisation of characters [34–36,53,55–56,58–59], which can have 

199 important implications for phylogenetic interpretations [53,57,60]. Conversely, the hind 
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200 limbs of Megaraptora and Allosauroidea have high preservation potential but relatively few 

201 diagnostic characters, and thus hind limb elements might be underutilised as a source of data 

202 for these groups [35] (figure 2). Character differences between subgroups could be related to 

203 a multitude of factors including, fossil preservation quality [25,26,35], bone size and 

204 robustness [23,31], geographic extent [34-36], author affiliations and potential clade study 

205 bias [34-36, 53].

206 Oviraptorosaurs, dromaeosaurids, allosauroids and tyrannosauroids have both the 

207 highest species richness and MNI of all the subgroups. Notably, they also have the highest 

208 skeletal coverage of diagnostic characters (62–82%) (electronic supplementary material, table 

209 S1), possibly enabling more specimens and species to be identified from limited material, 

210 which may otherwise be considered undiagnostic, potentially enabling stronger understanding 

211 of phylogenetic relationships [56–57]. 

212  We have defined LoD as a new metric quantifying researcher ability to identify 

213 individual species. Within the LoD, the likelihood of recognising new specimens of a species 

214 is effectively controlled by the number of unique characters assigned to it, which does not 

215 necessarily reflect the reality of identifications in the field or museum collections. For 

216 example, Allosaurus fragilis and Tyrannosaurus rex are two species known from a high 

217 abundance of material, yet both lack an up-to-date formal diagnosis [47], and therefore, lack 

218 a quantifiable diagnosability score. In practice, additional specimens of these, and other 

219 apparently common species, are in many cases identified by general morphological similarity 

220 rather than specific autapomorphies. Therefore, LoD does not fully capture how new 

221 specimens are assigned to species, and abundance proxies may be skewed by these 

222 ‘generalised’ identifications, potentially causing the lack of statistical relationship between 

223 LoD and abundance (table 1, 2). Furthermore, LoD is itself likely influenced by the variable 

224 preservation and sampling biases that impact the fossil record, but understanding this is 
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225 beyond the scope of this study. Despite these limitations, we believe LoD is an efficient 

226 approach to quantify diagnosability of fossil material and specifically address potential 

227 taxonomic identification bias. 

228 Although the theropod fossil record is no doubt biased by various preservation and 

229 historical sampling factors, we cannot identify particular formations or time bins to which 

230 palaeontologists have applied a significantly different set of identification criteria, which 

231 biases diversity or abundance patterns. We therefore, should have confidence in the manner 

232 in which workers gather taxonomic data, and probably, more confidence in the ecological and 

233 evolutionary information derived from the theropod fossil record: higher relative abundance 

234 or diversity of a particular species or clade, or time bin, are not the result of identification 

235 bias, but could be due to other known preservation biases, or actually represent real patterns. 

236 While for theropod dinosaurs, taxonomic identification is likely not a major source of bias, 

237 this conclusion cannot be widely applied to the entire vertebrate fossil record.

238
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240 innovation programme under grant agreement 637483 (ERC Starting Grant TERRA to RJB).
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250 Figure 1. Diagrammatical representation of the process and methodology behind the LoD metric. 

251 Figure 2. Radial plots depicting the relative percentage of occurrences of, and unique diagnostic characters 

252 assigned to, the major skeletal regions of Theropoda. All subgroup outer circles represent 50%. Scatterplots 

253 depict relationships between the Likelihood of Diagnosis (LoD) and species richness (black) and minimum 

254 number of individuals (MNI) (red) for summarised subgroup data (A) and between LoD and MNI per species 

255 (B-R). A, all theropod species; B, ‘basal’ Theropoda; C, basal Neotheropoda; D, Ceratosauria; E, basal 

256 Tetanurae; F, Megalosauroidea; G, Allosauroidea; H, Megaraptora; I, basal Coelurosauria; J, Tyrannosauroidea; 

257 K, Compsognathidae; L, Ornithomimosauria; M, Therizinosauria; N, Alvarezsauroidea; O, Oviraptorosauria; P, 

258 Dromaeosauridae; Q, Troodontidae; R, non-avialan Paraves; Abbreviations: chev., chevrons; Pect., Pectoral. 

259 Silhouettes used include work by S. Hartman, T Michael Keesey, T. Tischler, J. Conway, Funkmonk, and M. 

260 Martyniuk (http://phylopic.org/; CC BY-SA 3.0).

261

262 Table 1. Results of comparisons between LoD and select abundance proxies at different taxonomic scales using 

263 GLS.

Comparison Slope t-value R2 p-value

species LoD ~ MNI 0.0508 0.85 0.0020 0.40

species LoD ~ PBDB individuals 0.0010 0.02 0.0000 0.99

species LoD ~ PBDB occurrences -0.0220 -0.33 0.0003 0.74

species LoD ~ PBDB individuals per locality 0.0639 0.43 0.0006 0.67

subgroup LoD ~ MNI -0.0507 -0.94 0.0557 0.36

subgroup LoD ~ species richness -0.0534 -0.85 0.0461 0.41

subgroup LoD ~ MNI per species -0.0413 -0.38 0.0097 0.71

subgroup LoD ~ PBDB individuals -0.0157 -0.53 0.0181 0.61

subgroup LoD ~ PBDB species richness -0.0453 -0.73 0.0345 0.48

subgroup LoD ~ PBDB individuals per species -0.0118 -0.26 0.0046 0.80

subgroup LoD ~ PBDB occurrences -0.0152 -0.53 0.0185 0.60

subgroup LoD ~ PBDB individuals per locality -0.0601 -1.05 0.0679 0.31

subgroup LoD ~ PBDB species per locality -0.0531 -0.78 0.0393 0.45

264

265 Table 2. Results of comparisons between LoD and species richness and select abundance proxies at different 

266 spatiotemporal scales using GLS.
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Comparison Slope t-value R2 p-value

formation LoD ~ MNI 0.0143 0.27 0.0005 0.79

formation LoD ~ species richness -0.0584 -0.76 0.0036 0.45

formation LoD ~ MNI per species 0.0830 1.38 0.0116 0.17

formation LoD ~ PBDB individuals -0.0134 -0.33 0.0007 0.74

formation LoD ~ PBDB species richness -0.0482 -0.68 0.0031 0.50

formation LoD ~ PBDB individuals per species -0.0513 -0.84 0.0047 0.40

formation LoD ~ PBDB occurrences -0.0155 -0.38 0.0009 0.71

formation LoD ~ PBDB individuals per locality -0.1749 -1.45 0.0132 0.15

formation LoD ~ PBDB species per locality -0.0090 -0.12 0.0001 0.90

time LoD ~ MNI 0.0459 1.60 0.0841 0.12

time LoD ~ species richness 0.0466 1.51 0.0689 0.14

time LoD ~ MNI per species 0.0317 0.54 0.0120 0.59

time LoD ~ PBDB individuals 0.0334 1.41 0.0482 0.17

time LoD ~ PBDB species richness 0.0438 1.37 0.0541 0.18

time LoD ~ PBDB individuals per species 0.0144 0.25 0.0019 0.80

time LoD ~ PBDB occurrences 0.0372 1.69 0.0679 0.10

time LoD ~ PBDB individuals per locality 0.0179 0.10 0.0006 0.92

time LoD ~ PBDB species per locality -0.0152 -0.19 0.0015 0.85

267

268

269

270

271

272

273

274

275

276
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