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This article shows how to couple multiphysics and artificial neural networks
to design computer models of human organs that autonomously adapt their
behaviour to environmental stimuli. The model simulates motility in the
intestine and adjusts its contraction patterns to the physical properties of
the luminal content. Multiphysics reproduces the solid mechanics of the intes-
tinal membrane and the fluid mechanics of the luminal content; the artificial
neural network replicates the activity of the enteric nervous system. Previous
studies recommended training the network with reinforcement learning.
Here, we show that reinforcement learning alone is not enough; the input–
output structure of the network should also mimic the basic circuit of the
enteric nervous system. Simulations are validated against in vivo measure-
ments of high-amplitude propagating contractions in the human intestine.
When the network has the same input–output structure of the nervous
system, the model performs well even when faced with conditions outside
its training range. The model is trained to optimize transport, but it also
keeps stress in the membrane low, which is exactly what occurs in the real
intestine. Moreover, the model responds to atypical variations of its function-
ing with ‘symptoms’ that reflect those arising in diseases. If the healthy
intestine model is made artificially ill by adding digital inflammation, motility
patterns are disrupted in a way consistent with inflammatory pathologies
such as inflammatory bowel disease.
1. Introduction
In Mary Shelley’s novel, Dr Frankenstein brings his creature to life by, in line
with the contemporary theory of galvanism, pumping electricity into the crea-
ture’s nervous system. In fact, the ability of the nervous system to receive and
respond to external stimuli has always been recognized as an essential manifes-
tation of life. Away from galvanism, today scientists pursue the objective
of bringing (digital) the so-called virtual physiological human to life [1], a compu-
ter analogue of the human body where new treatments, bold medical
hypotheses and even disrupting ideas can be tested in a safe environment.
This is the ultimate goal of in silico medicine: integrating computer models of
the mechanical, physical and biochemical functions of the living human body
into the virtual physiological human.
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One of the obstacles to achieving this goal remains our
difficulty to replicate the activity of the autonomic nervous
system (ANS) within multiphysics models. Human physi-
ology is not the mere result of the well-known laws of
physics and chemistry but responds dynamically to environ-
mental stimuli to ensure the correct functioning of the body.
This ability, known as homeostasis, is regulated by the ANS
that adjusts the response of the organism to the perception
of the environment [2].

Computational neurosciences provide several models of
neurons and neural systems [3]. However, there is still a
long way before these models can be integrated into multi-
physics simulations. From a certain point of view, the state
of our virtual human remains vegetative. In silico hearts
only beat with fixed rhythms [4,5], in silico lungs only
breath with immutable frequencies [6,7], and in silico
intestines only contract with predetermined patterns [8,9].

Alexiadis [10] showed that artificial intelligence (AI) can
enhance multiphysics simulations. In Alexiadis et al. [11], a
multiphysics model of the intestine coupled with an artificial
neural network (ANN) could learn autonomously how to coor-
dinate its contractions and propagate the luminal content in a
given direction (peristalsis). The model could learn peristalsis,
but it could not adapt peristalsis to the physical properties of the
luminal content. The ANN used in that study was ‘omniscient’.
It had perfect knowledge of the environment, which does not
correspond to the actual capacity of the enteric nervous
system (ENS) to sense the luminal environment. In this study,
we show that the ANN should not be omniscient, but it
should carefully replicate the input–output structure of
the ENS. Moreover, in multiphysics simulations, diseased
states are usually hardcoded into the model [5,12–15]. This
study introduces a multiphysics + ANN model of the healthy
intestine that, under certain conditions, ‘becomes diseased’
without the need to hardcode the disease state into the
model. In fact, if (digital) inflammation is added to the intesti-
nal walls, the motility pattern of the healthy model is disrupted
in a way consistent with inflammatory pathologies such as
inflammatory bowel disease (IBD).
2. Results and discussion
2.1. The multiphysics model without an artificial neural

network (non-adaptive model)
The multiphysics model is based on discrete multiphysics
(DMP) [16] and combines two-particle methods: smooth par-
ticle hydrodynamics (SPH) to model the fluid [17] and the
lattice spring model (LSM) to model the elastic membrane
[18]. This is the baseline against which the adaptive model
will be compared; the Methods section provides details on
how SPH and LSM are implemented in the model.

To simulate a peristaltic contraction, radial forces f are
added to a section �L of the membrane (figure 1a). The position
of �L moves along the tube with velocity vWAVE replicating the
peristaltic wave. As the contraction moves along the intestine,
the chyme is pushed forward (from left to right in figure 1)
and the membrane stretches to accommodate the advancing
fluid. We call vCOM the displacement per unit time of the
fluid’s centre of mass, and � the average stretch (strain) of the
tube diameter (figure 1b). During the simulation, we measure
� since this is a controlling mechanism of peristalsis [19] that
is going to play an important role in the next sections.
During each contraction, the intestine can be divided into
three regions (figure 1c). The first is the propulsive segment,
where the intestine’s circular muscles contracts; the second is
the receiving segment, where muscles relax allowing the
lumen to expand; the third is the rest of the tube that it is neither
contracted nor relaxed. While �L moves along the tube, these
three regions move accordingly.

For the moment, we consider ‘static’ peristaltic waves where
�L moves with constant velocity. Figure 2a shows a typical situ-
ation. After a quick transient, the luminal content moves at
approximately constant velocity (vCOM). At the same time, the
stretch (�) of the receiving segment also reaches a plateau. The
final vCOM and � depend on both the velocity of the peristaltic
wave (vWAVE) and the viscosity of the luminal content (�). The
intestinal content can have a complex rheology [20], but, for
simplicity, the fluid is considered Newtonian. We chose three
viscosities (� = 7.8 × 10�3, 7.8 × 10�2 and 7.8 × 10�1 Pa s) to
cover a range consistent with the available data [21]. For each
viscosity, we ran 10 simulations with vWAVE between 1 and
10 cm s�1. Figure 2b,c shows the plateau values of vCOM and �
versus vWAVE for different viscosities. In general, higher
values of vWAVE tend to increase vCOM. However, if the wave
moves too quickly, the propulsive segment has no time
to close completely and some of the fluid leaks backwards
resulting in lower vCOM. Electronic supplementary material,
video S1 shows the case of high viscosity and low velocity
(� = 7.8 × 10�1 Pa s, vWAVE = 1 cm s�1), where the propulsive
segment closes completely, and the fluid moves with the
wave. Electronic supplementary material, video S2 shows the
case of high viscosity and high velocity (� = 7.8 × 10�1 Pa s,
vWAVE = 10 cm s�1), where the propulsive segment has no
time to close completely and backflow is observed. The inter-
play between vWAVE and � produces various situations, which
include the up-and-down profile of figure 2b, or even negative
vCOM when the backflow is higher than the forward flow
(figure 2c). Given the viscosity of the luminal content, there is
an optimal v*WAVE that maximizes transport (i.e. vCOM);
higher velocities are counterproductive because of backflow.

Current multiphysics models (e.g. [22–24]) only account for
fixed vWAVE, whose propagation pattern is hardcoded and does
not adapt to the luminal environment. However, this is not how
our body works. The ENS adapts the peristaltic wave to the
physical properties of the luminal content that changes continu-
ously along with the gastrointestinal (GI) tract. ‘Intelligent’
models were developed coupling multiphysics with ANNs
[11]. Nevertheless, these models do not provide a realistic rep-
resentation of the ENS. In [10,11], for instance, the model
could learn peristalsis, but it could not realistically adapt the
contraction speed to the actual properties of the luminal con-
tent. This depends on how the ANN is coupled with the
multiphysics model. In these studies, the ANN is ‘omniscient’.
It has a perfect knowledge of the environment, which does not
reflect how the ENS senses the luminal environment. In the next
section, we develop an adaptive model that couples multiphy-
sics with an ANN replicating the input–output relationship of
the ENS.

2.2. Coupling the multiphysics model with the artificial
neural network (adaptive model)

The ENS contains around half a billion neurons embedded in
the walls of the GI tract. It comprises several types of sensory
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Figure 1. Particle representation of the discrete multiphysics model (a), Cauchy strain in the membrane (b) and continuum representation of the discrete model (c).
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and motor neurons that, besides peristalsis, coordinate blood
flow, mucosal secretions and endocrine activity [25]. In this
study, we only consider peristalsis and, in particular, high-
amplitude propagating contractions (HAPCs), which transfer
luminal contents over long distances. How the ENS controls
HAPCs is still debated. Here, we employ the ‘neuromechani-
cal loop’ hypothesis [26]. According to this hypothesis, the
presence of the bolus stretches the membrane activating sen-
sory neurons located on the receiving segment (figure 3a).
These neurons communicate with motor neurons in the
propulsive segment that contract the muscle layer around
this segment. The ANN imitates this type of input–output
structure (figure 3b). On the one hand, the LSM particles of
the propulsive and receiving segment (orange particles in
figure 3b) are computational particles used to model the elas-
tic membrane. On the other hand, they are, respectively, the
input and output layers of the ANN. These particles are par-
ticle–neuron duals [11], which allow for seamless
communication between the DMP model and the ANN.
They measure the stretch of the receiving segment and
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input this information into the ANN. The input layer con-
verges to a pooling layer that calculates the average stretch.
This information passes through the hidden layers. The
final output of the ANN is the speed of the peristaltic wave
(vWAVE). Based on vWAVE, the model calculates which part
on the membrane should be contracted at any given time.
A ‘1’ in figure 2b means that the section contracts ( f applied
to the particle). A ‘0’ means that the section does not contract.
The ENS has several other functions in the body and its struc-
ture is more complex than this, but, in this study, we only
focus on the stress/contraction relationship.

To save computational resources, instead of considering
a large ANN spanning the entire tube, the ANN moves
with the wave. The ANN slides over the membrane particles
with velocity vWAVE in such a way that input always cor-
responds to the receiving segment and output always
corresponds to the contracting segment. The model measures
the stretch � of the receiving segment every 0.1 s. It feeds this
information to the ANN that outputs the optimal vWAVE max-
imizing mass transport (i.e. vCOM). Initially, the ANN is not
trained and, therefore, not capable of calculating the optimal
vWAVE. This is not the typical classification problem that can
be handled with supervised training but requires a different
training approach called reinforcement learning (RL) [27].
Details on the ANN architecture, hyperparameters and train-
ing are given in the ‘Methods’ section.
2.3. The ‘healthy’ adaptive model
Figure 4 compares the non-adaptive model (simple multi-
physics) with the adaptive model (multiphysics + ANN) for
� = 7.8 × 10�3 (low viscosity), 7.8 × 10�2 (intermediate viscosity)
and 7.8 × 10�1 Pa s (high viscosity). There are two levels of
optimization here. The first is the optimal constant velocity
wave from the simple multiphysics model (v*WAVE in figure 2).
The simple multiphysics model does not calculate v*WAVE

because it is non-adaptive. In figure 2, in fact, v*WAVE was cal-
culated ‘by hand’ from the data. The second is the optimization
of a wave with non-constant vWAVE. The multiphysics + ANN
model is adaptive and, therefore, not constrained to constant
vWAVE. Each 0.1 s, it reassesses the situation and updates
vWAVE. This is particularly important at low and intermediate
viscosities. As an example, we can look at � = 7.0 × 10�3 Pa s
(low viscosity, figure 4a–c). The optimal speed of the constant
velocity wave at low viscosity is v*WAVE = 5 cm s�1 (figure 2b).
With this vWAVE, the fluid moves with vCOM = 1.2 cm s�1

(figure 4a). If vWAVE > v*WAVE, vCOM < 1.2 cm s�1 because of
backflow. Instead of maintaining vWAVE constant, the multi-
physics + ANN model oscillates vWAVE between 1 cm s�1

and 10 cm s�1 (figure 4c). It accelerates the fluid until the
stretch of the receiving segment reaches 6% (figure 4b) and
then reduces vWAVE before backflow occurs. In this way,
backflow is minimized, and the fluid is accelerated above
vCOM = 1.2 cm s�1 (figure 4a).

At high viscosities, vCOM from the adaptive model is lower
than that of the optimal constant velocity wave (figure 4g). At
first glance, this looks odd. The explanation lies in the input–
output structure of the ANN that mimics the ENS. An omnis-
cient ANN would always find the optimal v*WAVE, but our
ANN bases its decisions only on the stretch � of the receiving
segment. If we use the stretch as input, the ANN cannot
always find v*WAVE. An easy way to see this is by comparing
figure 2c,d. While in figure 2c high values of vCOM occur for
� < 12%, in figure 2d high values of vCOM are found for � >
25%. These two conditions are incompatible. Therefore, the
ANN, that only sees �, cannot find a vWAVE optimal for both
cases, and settles for a trade-off between the two goals.

The solution adopted by AI keeps the stretch of the mem-
brane low (� < 6%) for most of the time (figure 4). This is also
true for the actual ENS, which, above a certain stress,
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Figure 3. Interaction between sensory and motor neurons in the ENS according to the neuromechanical loop hypothesis (a), ANN replicating the input–output
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architecture are given in the ‘Methods’ section.
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interrupts intestinal motility [28]. In the model, this outcome
is possible only because we purposely designed the ANN
with the same input–output structure as the ENS. This
devise ensures that training of the ANN is constrained to sol-
utions that are compatible with the way (based on measuring
�) the ENS perceives the position of the luminal content. Pre-
vious studies, where the ANN was designed differently
(omniscient), did not achieve this result [11]. The input of
the omniscient ANN was the actual position of the luminal
content; the ANN converged to v*WAVE, which is optimal
from an absolute point of view, but it does not keep � low.
Electronic supplementary material, videos S3 and S4 show
AI in action. At low viscosities, it starts with a big push,
which accelerated the fluid without excessively increasing
the stress on the membrane (because of the lower fluid vis-
cosity) and then settles for a lower velocity that reduces
leakage (electronic supplementary material, video S3). At
high viscosities, stress on the membrane is higher. Therefore,
both the initial push and the final velocity tend to be slower
(electronic supplementary material, video S4).

To validate the model, we compare �vAI
WAVE� (the aver-

age vWAVE calculated by the AI) with in vivo measurements.
The HAPCs speed reported in the literature is given, depend-
ing on the variability of physiological data and different
measurement techniques, in the range 0.2–12 cm s�1 [29] or
at around 2 cm s�1 [30]. Furthermore, MRI analysis of the
human caecum–ascending colon showed wave velocities of
0.98 and 2.2 cm s�1 at baseline and stimulated conditions,
respectively [31]. Our simulations at intermediate (figure 4f )
and high viscosities (figure 4i) are very close to [30]. The low
viscosity case (figure 4c) shows a higher �vAI

WAVE�, which is
within the range specified in [29]. Experiments with isolated
rabbit distal colons [26] show that the peristaltic speed
decreases with an increase in the viscosity. Numerical
values are different in rabbits and humans, but the trend
agrees with our model. As for the wave velocity, the 6%
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Figure 4. Comparison between vCOM, �, and vWAVE calculated with the multiphysics model (blue lines) and the multiphysics + ANN model (orange lines). v*WAVE is
the optimal constant vWAVE from figure 2.
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stretch threshold is also not hardcoded in the model, but the
results of the training phase. This value is consistent with
in vivo studies too. The threshold stretch to initiate peristalsis
was measured in segments of the isolated guinea pig intestine
[32]. For segments longer than 20 cm, the threshold is around
7%, which is close to the value determined by the model.
2.4. Modelling inflammatory bowel disease by adding
digital inflammation to the adaptive model

In the previous section, we showed that, by making sure
that the ANN mimics the structure of the ENS, the behaviour
of the adaptive model is consistent with the behaviour of
the real intestine. We trained the network to optimize trans-
port, but the ANN also keeps the stress in the membrane
low, which is exactly what occurs in the real intestine [28].
Therefore, it can be interesting assessing the reliability of the
model in a variety of other scenarios. We add (digital) inflam-
mation to the intestinal walls with the aim of inducing IBD to
the model. IBD is an umbrella term for a group of inflamma-
tory conditions of the intestine; it can have several causes,
but one of the common consequences is inflammation of the
intestinal walls. This inflammation triggers the sensory neur-
ons on the membrane in such a way that the ENS perceives
the membrane as more stretched than it actually is [33]. In
the model, this is produced by ‘hacking’ the input layer of
the ANN. The stretch of the membrane is a physical quantity;
it does not change with inflammation. What changes is the
perception of the neural network to the stretch. This false per-
ception is achieved by adding a quantity of �w to �. The degree
of inflammation is defined as

w … 100 �
1w

1 þ 1w
: ð2:1Þ
This, of course, is a very simplified approach to a complex
phenomenon like inflammation. The model does not account
for the aetiology of inflammation, but only for the effect that
it has on the input layer of the ANN. Figure 5 shows how
the system reacts to different degrees of inflammation in com-
parison with the healthy model. For all simulations, the initial
10 s correspond to a healthy section. After this, the wave
moves into an inflamed section. Electronic supplementary
material, video S5 shows an example (low viscosity): the first
half of the tube is healthy, the second half has 50% inflam-
mation. The presence of inflammation tends to slow down
the wave bringing to longer transit times.

At first glance, this result looks counterintuitive. A typical
consequence of IBD is diarrhoea, which implies shorter rather
than longer transit times. However, recent studies found that sub-
jects with IBD-related pathologies exhibit colon stasis (i.e. higher
transit times) and diarrhoea is due to exudation of mucus and
blood in the sigmoid and rectum rather than rapid transit times
[33]. Therefore, the model captures this apparently counterintui-
tive behaviour correctly. It also captures the role of viscosity
correctly. In fact, high-viscosity foods that produce higher stresses
on the membranes are known to exacerbate IDB symptoms [34].
3. Methods
3.1. The discrete multiphysics model
The DMP model accounts for a flexible tube, representing the
walls of the intestine, and a viscous fluid, representing the
chyme (figure 1). In DMP, the domain is divided into compu-
tational particles that interact with each other by means of forces.
If the forces acting on a particle mimic the elastic forces occurring
in solids, the particle behaves like a solid; if they mimic the viscous
and pressure forces occurring in liquids, the particle behaves like a
liquid: the LSM is used for calculating elastic forces, SPH for
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Figure 5. Comparison between healthy (blue lines) and inflamed (orange lines) models for different viscosities of the luminal content.
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viscous and pressure forces. Table 1 lists all the details of the model
used in this study. The diameter of the tube is closer to the size of
the colon (approx. 5 cm) than the small intestine (approx. 3 cm).
Besides size, there are, of course, regional differences in how the
GI tract senses and reacts to the luminal environment, but, in prin-
ciple, the proposed computational approach can be used for both
systems. The reader can refer to [17] for details on the SPH
theory, and to [18] for the LSM theory; more details on the specific
intestine DMP model can be found in [9].

3.2. The artificial neural network and its training
There are 250 LSM particles in the section �L. These represent the
input layer of the ANN. The input layer goes into a pooling layer
that calculates the average stretch � over the whole section. This
information passes into two hidden layers (100 neurons each)
and finally to the output layer. The output layer has three neur-
ons, which correspond to three possible actions: (i) increase
peristaltic speed by �v = 0.1 cm s�1, (ii) maintain the same vel-
ocity or (iii) decrease peristaltic speed by �v. Based on the new
velocity, the section �L moves along the tube by a certain dis-
tance. Knowing the new position of �L, we can determine to
which particles we need to exert the contracting force f for advan-
cing the peristaltic wave. As mention in the ‘Results and
Discussion’ section, the ANN requires training before working
properly. This is not a classification problem and training is car-
ried out with a technique known as RL [27]. Given the input
(called state in RL), the ANN is trained to choose a specific
action that maximizes a reward. For the problem under investi-
gation, the input is �, the possible actions are (i) increase, (ii)
maintain or (iii) decrease vWAVE by �v, and the reward is vCOM.
There are several RL algorithms available. Here, we use a
method called cross-entropy [27]. The training phase is divided
into N episodes constituted of M simulations (batches) each.
During each episode, a random viscosity between � = 7.8 × 10�

3 Pa s and � = 7.8 × 10�1 Pa s is chosen, and M simulations are
carried out with this value of the viscosity. All simulations
start at rest (vWAVE = 0) and are carried out for 5 s. Every 0.1 s,
the model measures � and the ANN produces the probabilities
of increasing, maintaining or reducing vWAVE. The new action
is chosen randomly according to these probabilities. After the
model executes the new action, the membrane will react with a
new stretch, which will trigger a new action from the ANN,
and so on. For each episode, we calculate the reward. Due to ran-
domness in choosing the actions, some episodes will produce
better rewards than others. The core of the cross-entropy
method is to throw away bad episodes and train the ANN on
better ones. We use the 70th percentile of all rewards, which
means we only keep the 30% of the simulations with the highest
reward and throw away all other episodes. We conclude the epi-
sode by training the ANN with these ‘elite’ episodes. The new
episode is carried out in the same way and will produce new
training data for the network. With each episode, the ANN
learns how to repeat the best actions, which leads to higher
and higher rewards. Details on the ANN and the training are
given in table 2. The reader can refer to the Keras documentation
[35] for the items in table 2 not explicitly discussed in the text.
Training does not always converge to an optimal solution
(called policy in RL), and even when it does, there is no a clear
criterion for deciding if it is an absolute or a relative minimum
of the loss function. In this study, we repeated training four
times and compare the final models against experiments and
in vivo measurements. As discussed in the ‘Results and Discus-
sion’ section, the fourth model was chosen as the more realistic
since (i) peristaltic velocity matches the real value, (ii) the trend
viscosity-versus-vWAVE is correct, (iii) it properly avoids high �
and (iv) remains reliable when digital inflammation is added.
3.3. Software
The simulations of the physical model are carried out with the
open-source software LAMMPS [36] compiled as a Python
library, while the Python library Keras [35] is used for training
the network. Visualization and videos were processed with the
software Ovito [37].



Table 1. Technical details of the DMP model; the reader can refer to [9,17,18] for explanation of the items in the table that are not explicitly discussed in the
text.

number of particles, N 14 578 solid 2500; liquid 12 078

mass of particles, m 2.5 × 10�4 kg

elastic forces (LSM) Fij … kðrij � r0Þ Hookean spring: rij is the distance between particles i and j,

k = 5 × 10�1 N m�1, r0 = 6 × 10�3 m

pressure (SPH)
P …

c0r0

7
ri

r0

� �7

� 1

" #
Tait equation: �i is the density of particle i, �0 = 103 kg m�3,

c0 = 0.005–0.5 m s�1 (depending on viscosity)

viscous forces (SPH) Pij … �ah
c0
rij

vij rij
r2ij þ bh2

vij is the relative velocity between particle i and j, �ij = �j + �i,

h = 1.2 × 10�2 m, � = 1, b = 0.01.

�uid–solid interaction
Uij … A 1 þ cos

prij
r0

� �� �
, r , r0

potential to avoid compenetration between solid and liquid particles:

A = 2 × 10�6 J

boundary conditions periodic particles that exit from one side of the tube, re-enter from the other

side

time step, �t �t = 2 × 10�3 s

length of the tube, L 0.63 m

radius of the tube, R 0.025 m

length of the contraction

section, �L

0.063 m the length of �L is �xed, but the position can be moved everywhere

along the tube L

contraction force f = 10�3 N this force is added to each particle in the section �L

Table 2. Architecture of the ANN and hyperparameters used for training;
the reader can refer to [35] for the items in table not explicitly discussed
in the text.

input layer N = 250

pooling layer input 250, output = 1 performs average

hidden layer 1 N = 100 w = relu

hidden layer 2 N = 100 w = relu

output layer N = 3 w = softmax

hyperparameters loss = categorical cross-entropy

metrics = accuracy optimizer = adam

batch size = 10 episodes = 20 000
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4. Conclusion
This study proposes a technique for coupling multiphysics
and ANN to design in silico models of human organs that
autonomously adapt their behaviour to environmental
stimuli. The technique is applied to a model of the intestine
that, based on the stretch of the membrane, regulates its
peristaltic contractions to optimize transport. multiphysics
ensures that the model complies with the mechanics of the
system, while the neural network is trained to replicate the
action of the ENS within the constraints imposed by the
mechanics. A traditional approach would require hardcoding
in the model the functional relationship between the stretch
threshold that initiates contraction and the velocity of the
peristatic wave. Here, they spontaneously emerge as a
result of the training process. After training, we only need
to validate the model by verifying that these parameters are
consistent with in vivo measurements. The model has another
unexpected property. It responds to atypical variations of its
functioning with ‘symptoms’ that reflect those arising in real
diseases. We started with a healthy intestine model and we
made it artificially ill by adding digital inflammation. As a
result, the model motility patterns are disrupted in a way
that mirrors inflammatory pathologies like IBD. This seminal
paper targets peristalsis, which represents only a subset of
intestinal motility, and only a specific aspect of IBD. However,
it brings us one step closer to a virtual physiological human
that not only reproduces the mechanics of our body, but also
adjusts its behaviour to environmental factors. This includes
the possibility of computer models that, under certain con-
ditions, can ‘become ill’ with symptoms that simulate those
of real diseases.
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