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MAXIMUM CONDITIONAL ENTROPY HAMILTONIAN MONTE CARLO
SAMPLER∗

TENGCHAO YU† , HONGQIAO WANG‡ , AND JINGLAI LI§

Abstract. The performance of Hamiltonian Monte Carlo (HMC) sampler depends critically on some algorithm
parameters such as the total integration time and the numerical integration stepsize. The parameter tuning is particu-
larly challenging when the mass matrix of the HMC sampler is adapted. We propose in this work a Kolmogorov-Sinai
entropy (KSE) based design criterion to optimize these algorithm parameters, which can avoid some potential issues
in the often used jumping-distance based measures. For near-Gaussian distributions, we are able to derive the op-
timal algorithm parameters with respect to the KSE criterion analytically. As a byproduct the KSE criterion also
provides a theoretical justification for the need to adapt the mass matrix in HMC sampler. Based on the results,
we propose an adaptive HMC algorithm, and we then demonstrate the performance of the proposed algorithm with
numerical examples.

Key words. Hamiltonian Monte Carlo, Kolmogorov-Sinai entropy, Markov chain Monte Carlo.

1. Introduction. Generating samples from a target distribution is an important practice in
many fields of science and engineering. The Hamiltonian Monte Carlo (HMC) method [20, 2],
initially developed in the Physics community [10], has become a very popular tool for sampling
distributions with continuously differentiable density functions. The HMC method receives con-
siderable attention from Scientific Computing and Computational Statistics, and many signifi-
cant improvements of the method have been been developed in the last decade, for example,
[5, 7, 12, 15, 24, 26, 28], just to name a few. Loosely speaking, the HMC method proposes new
samples by simulating particle movement of a Hamiltonian system constructed from the target
density for a given amount of time, and it can often achieve better performance than standard
random-walk based Markov chain Monte Carlo (MCMC) algorithms as it takes advantage of the
gradient information of the target distribution [20, 2].

It is well-known that the performance of the HMC algorithm depends critically on the algorithm
parameters, and in particular on the mass matrix or the metric [4], the total integration time and
the numerical integration stepsize. As such, tuning these parameters becomes an important task
in the implementation of HMC. First, a popular practice to tune the mass matrix is to set it to be
the inverse of the covariance of the target distribution, and the physical intuition behind this choice
can be found in e.g., [20]. A rigorous justification of such a choice has yet been established to the
best of our knowledge. On the other hand, a number of methods have been developed to tune
the other two key algorithm parameters: the total integration time and the integration stepsize.
Such works include, the optimal tuning derived in the infinite dimensional limit [3], the No U-turn
sampler (NUTS) [15], and the Adaptive HMC sampler (AHMC) [26]. However, it is rather difficult
to directly apply these methods when the mass matrix is adapted during the MCMC iteration: for
example, in the implementation of NUTS in STAN [6] the mass matrix is estimated in the warmup
period and fixed afterwards. The main problem concerned in this work is how to determine the
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2 T. YU, H. WANG AND J. LI

integration time and the numerical stepsize when the mass matrix is adapted.

When designing a tuning scheme of MCMC, one usually relies on a specific design criterion or
performance measure, and for example, in both [3, 26], the tuning schemes make use of the expected
squared jumping distance (ESJD), which was proposed in [22] for random walk MCMC algorithms.
The ESJD criterion, which seeks the largest jumping distance, may cause some potential issues in
the HMC sampler. An intuitive example for this is that the particles jumps from one side of the
space to the other in each iteration, and in this case even though they may travel a very long
distance, the Markov chain may not even be ergodic [20]. In Section 2.3 we shall demonstrate
that this is exactly the case when the HMC proposal is tuned by maximizing the ESJD for the
simple Gaussian target distributions. To address the issue we propose a new design criterion based
on the Kolmogorov-Sinai entropy (KSE) [23] of the underlying Markov chain and we show that
this criterion can lead to the very optimal proposal in the Gaussian case (namely, when the target
distribution is exactly Gaussian, the proposal becomes the target distribution itself). Moreover, for
near-Gaussian distributions, we can analytically derive the optimal integration time with respect
to the KSE (which, as will be shown in Section 2, is essentially the conditional entropy of the
underlying Markov chain) criterion, and this result enables us to develop a HMC algorithm that
adapts the mass matrix. Interestingly we are also able to show that the optimal mass matrix under
the KSE criterion is actually the inverse of the target covariance, providing a justification of the
strategy previously obtained from physical intuition [20]. With numerical examples, we show that
the proposed algorithm has a rather competitive performance against existing methods for a certain
class of problems, i.e., those with near-Gaussian distributions.

To summarize, the main contribution of the present work is two fold: first we provide a KSE
based design criterion to determine the algorithm parameters of HMC proposal, and for near-
Gaussian distributions, we derive an analytical result of the optimal integration time under the
KSE criterion; second, using the optimality results we design an adaptive HMC algorithm which
automatically determines the stepsize while the mass matrix is adapted. The rest of the paper is
organized as follows. In Section 2 we present the proposed Maximum conditional entropy (or KSE)
HMC sampler, and provide some optimality results of the sampler. In Section 3 we demonstrate
the performance of the proposed algorithm with mathematical and practical examples. Finally in
Section 4, we provide some concluding remarks on both the advantages and the limitations of the
proposed method.

2. The maximum conditional entropy HMC sampler.

2.1. The HMC algorithm. Let x be a n-dimensional random variable with distribution

π(x) = exp(−U(x)). (2.1)

By using the Hamiltonian dynamics, one can design a very efficient scheme to draw samples from
the distribution π(x). Specifically one constructs an artificial Hamiltonian system that has x as its
position variable and the function U(x) as the potential energy of the system, and then introduces
an auxiliary variable p to be the momentum of the system with kinetic energy K(p). In practice,
the kinetic energy is usually taken to be of a quadratic form:

K(p) =
1

2
pTM−1p, (2.2)
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Algorithm 1 The leapfrog algorithm

1: function (xT ,pT )=leapfrog(x0,p0,M,U, ε, L)
2: for i = 1 to L do
3: Set p← p0 + 1

2ε∇U(x0);
4: Set x← x0 + εM−1p
5: Set p← p + 1

2ε∇U(x);
6: end for
7: Set xT ← x and pT ← p;
8: end function

where M is a positive definite symmetric matrix. The dynamics of the constructed system is
governed by

dx

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂x
. (2.3)

Suppose the current position is x0 and the HMC performs the following steps in each iteration,
• Sample an initial momentum state p0 from the distribution N(0,M);
• Solve the Eq. (2.3) with initial condition (x0,p0), for a given amount of time T , obtaining

the new states (xT ,pT );
• Accept the new position xT with probability

min[1, exp(H(x0,p0)−H(xT ,pT ))]. (2.4)

Since the Hamiltonian system preserves its total energy,

H(x(t),p(t)) = U(x(t)) +K(p(t)),

it should be clear that if we can solve the Eq. (2.3) exactly, the acceptance probability is simply
one. In practice, however, Eq. (2.3) must be solved numerically and as a result the acceptance
probability is lower than one. The leapfrog algorithm [20] is commonly used to solve the system
for its ability to preserve the time-reversibility, and moreover, when the integration time T is large,
one often use multiple leapfrog steps to integrate the ODE system (2.3) from 0 to T . In Alg. 1 we
present the multiple-step leapfrog algorithm for solving the ODE system (2.3).

2.2. Maximizing the entropy rate. Now suppose that we can solve the Hamiltonian sys-
tem (2.3) exactly, achieving the 100% acceptance probability, and an important question here is
how to choose matrix M and time T for the best efficiency of the HMC algorithm? To answer this
question, we first need to establish an optimality criterion or a performance measure of the HMC
sampler.

A very natural choice for such a performance measure is the ESJD:

E[‖xT − x0‖2], (2.5)

which was first proposed by Pasarica and Gelman [22] and was later applied to HMC in [3, 26].
As is mentioned earlier the main idea behind the ESJD criterion is to seek a proposal that moves
the largest distance from the present location, and this idea performs well in a number of target
distributions. However, as will be shown later, maximizing the ESJD may lead to problematic HMC
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proposals in certain circumstances and in particular, in the simple Gaussian case, the resulting chain
becomes periodic and loses its ergodicity. Naturally we expect that the ESJD criterion may not
perform well for distributions that are close to Gaussian, an important class of distributions in many
practical problems. This issue then motivates us to consider alternative design criterion. It is well
known that a general principle to design a MCMC scheme is to minimize its mixing time, which
however can not be directly used as it is extremely difficult to compute. However, it is reported
in [18] that maximizing the KSE can yield very close results to those of minimizing the mixing
time for general Markov chains. Based on this finding we propose to determine the parameters in
HMC by maximizing the KSE. The intuition for maximizing the KSE can also be understood as to
seek a transition distribution that is maximally dispersing (as is measured by KSE) so that it can
explore the state space efficiently, an idea often used in the network theory [8]. For a stationary
time-reversible Markov chain, the KSE is equal to the conditional entropy (CE):

H(xT |x0) =

∫
log π(xT |x0)π(xT ,x0)dxT dx0, (2.6)

which means that the algorithm parameters are determined by maximizing the CE of the chain.
When π(xT |x0) is Gaussian, the CE in Eq. (2.6) is (up to a constant) equal to

Ex0 [log det Cov[xT |x0]]. (2.7)

Thus when π(xT |x0) is Gaussian or near-Gaussian, we can choose to optimize Eq. (2.7) for that it
is usually easier to evaluate than Eq. (2.6).

2.3. Near-Gaussian distributions. In this section we consider the situation where the tar-
get distribution is near-Gaussian. The rationale here is that we can first derive the optimal algorithm
parameters including T by assuming the target distribution is exactly Gaussian, and it should be
sensible to use derived parameter values for the actual target distribution provided it does not devi-
ate too far from Gaussian. Such near-Gaussian distributions arise frequently in Bayesian inference
problems, especially for those with a large amount of data, thanks to the asymptotic normality
property [11]. Following this idea we shall assume that the target distribution can be well approxi-
mated by a multivariate Gaussian π(x) ≈ N (µ,Σ), where µ and Σ are the mean and the covariance
of π(x) respectively. Without loss of generality we shall assume µ = 0 to keep the calculations
simple.

The main result. In this case, we aim to determine the following algorithm parameters: the
momentum covariance matrixM , and the integration time T . Here for the convenience of theoretical
analysis, we need to impose a constraint on M : it commutes with Σ. That is, we shall choose M
from M +

Σ , the class of all positive definite matrices that commute with Σ. As is discussed in
Section 2.2 these parameters will be determined by solving

max
{M∈M +

Σ ,T∈R+}
Ex0

[log det Cov[xT |x0]], (2.8)

where R+ denotes all positive real numbers. The following theorem states the main result of the
work:

Theorem 2.1. Suppose that π(x) = N (0,Σ), x0 ∼ π(x), p0 ∼ N (0,M), and x(t) is the
solution of the Hamiltonian system (2.3) with K(p) given by Eq. (2.2). Let xT = x(T ), and a
solution of the optimization problem (2.8) is

M = Σ−1, and T = (2m+ 1)π/2, (2.9)
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Fig. 2.1. The scatter plots of the samples in the (x, p) space. Top: the results of the HMC with three different
values of T near the optimal value with respect to CE; Middle: the results of the HMC with three different values
of T between 0.5π and π; Bottom: the results with three different values of T near the optimal value with respect to
ESJD.

for an arbitrary non-negative integer m.

Proof: First we define A = M−1Σ−1, and since M−1 and Σ−1 commutes, A is also a positive
definite matrix. Now suppose that we conduct an eigenvalue decomposition of A, yielding A =
V ΛV −1 , where V is a square matrix whose the i-th column is the eigenvector vvvi of AAA and ΛΛΛ is the
diagonal matrix whose diagonal elements are the corresponding eigenvalues, ΛΛΛi,i = λi.

Under the assumption that the target distribution π(x) = N (0,Σ), the Hamiltonian system (3)
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can be solved analytically,

xxx(t) =

n∑
i=1

(ai cos
√
λit+ bi sin

√
λit)vvvi, (2.10a)

ppp(t) = M

n∑
i=1

√
λi(−ai sin

√
λit+ bi cos

√
λit)vvvi, (2.10b)

where the coefficients {ai, bi}ni=1 are determined via the initial conditions:

xxx0 =

n∑
i=1

aivvvi, ppp0 = M

n∑
i=1

√
λibivvvi. (2.10c)

By some elementary calculations, we obtain from Eqs. (2.10) that,

C = Cov(xxxT |xxx0) =
n∑

i=1

n∑
j=1

E[bibj ] sin(
√
λiT ) sin(

√
λjT )vvvivvv

T
j . (2.11)

Now using Eq. (2.10c) and the facts that xxx0 ∼ N (0,Σ) and p0 ∼ N (0,M), we derive that (b1, ..., bn)
follows a multivariate Gaussian distribution and

E[bi, bj ] = Γi,j , where Γ = Λ−
1
2V −1M−1V −T Λ−

1
2 , (2.12)

for any 0 ≤ i, j ≤ n.
Substituting Eq. (2.12) into Eq. (2.11) yields,

C = V ΛsinΓΛsinV
T , (2.13)

with

Λsin = diag[sin
√
λ1T, ..., sin

√
λnT ]. (2.14)

It follows that

detC = det(V ΛsinΓΛsinV
T ) =

n∏
i=1

λΣ,i
1− cos 2

√
λiT

2
, (2.15)

where λΣ,1, ..., λΣ,n are the eigenvalues of Σ. Now recall that we want to find a solution of

max
{M∈M +

Σ ,T∈R+}
Ex0 [log det Cov[xT |x0]]

= max
{M∈M +

Σ ,T∈R+}

n∑
i=1

log
1− cos 2

√
λiT

2
+ log det Σ.

(2.16)

It is obvious that the maximum of the problem is attained at√
λiT =

(2m+ 1)

2
π, for i = 1...n,
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where m is an arbitrary integer. A special choice is that

T =
(2m+ 1)

2
π,

and λi = 1 for i = 1...n. It follows immediately that matrix A is identity, which implies that
M = Σ−1. �

In practice, since the Hamiltonian system needs to be solved numerically, it is certainly desirable
to use smaller integration time T , and thus in the HMC algorithm we set m = 1 and T = π/2.
We reinstate here that, while the trick to improve the efficiency of HMC by choosing M = Σ−1

has long been known from an intuitive perspective [20], we are able to provide a justification for it
based on the maximum CE (MCE) principle.

Comparison with ESJD: a univariate example. Here we use a simple univariate example to
demonstrate the difference between the CE criterion and the ESJD. Namely we assume that the
target distribution is N(0, k), K(p) = p2/(2m) and p0 ∼ N(0,m). In this case, by some elementary
calculations we can derive that an integration time that maximizes ESJD (2.5) is T =

√
kmπ,

and the associated proposal is: xT = −x0, which means that the samples will only jump between
two locations (x0 and −x0) and the resulting chain is certainly not ergodic. On the other hand,
the optimal integration time with respect to CE is T =

√
kmπ/2, and the associated proposal is

π(xT |x0) = N(0, k), i.e., to sample directly from the target distribution, which is the very optimal
distribution in this case. We refer to Appendix A for a detailed derivation of the optimal integration
time with respect to KSE and ESJD. It is also easy to derive that, the efficiency of the proposal
behaves periodically with respect to T in this case. In the first numerical example, we use numerical
experiments to validate the theoretical analysis conducted here.

Determining the number of leapfrog steps. Now we have derived the optimal integration time
T , and as is discussed earlier, we need to integrate the Hamiltonian system (2.3) from 0 to T using
the leapfrog algorithm. In particular, we usually need to perform leapfrog integration multiple
times to achieve the necessary numerical precision, and to this end, the number of leapfrog steps,
conventionally denoted by L, is another key algorithm parameter to be specified. If we increase L,
the numerical integration becomes more accurate and the acceptance probability approaches to 1,
and the price to pay is that more leapfrog steps means higher computational cost. We note here
that in most existing works both L and ε = T/L need to be determined simultaneously, and in
that case higher acceptance probability does not necessarily imply a better proposal even without
considering the computational cost for computing the proposal. In our method, however, since
the total integration time T is fixed, it is reasonable to assume that increasing L, which in turn
increases the acceptance probability, improves the performance of the algorithm. Based on this
idea, we shall seek the value of L that provides the highest acceptance rate per computational cost
(which is usually measured by L). Namely, we use an adaptive scheme to gradually increase L until
the average acceptance rate per L does not improve.

Adaptively estimating the covariance matrix. Another important issue in the method is that
it requests the knowledge of the target covariance matrix. Here we follow the idea of the adaptive
MCMC algorithms to estimate the covariance from the sample history and specifically the target
covariance is updated using the method given in [14, 13]. We emphasize here that, the adaptive
algorithm does not require an accurate estimation of the target covariance in advance (i.e. from
a pilot runs); rather it adaptively improves the estimate of the covariance as the sample size in-
creases [1]. We present the complete algorithm in Alg. 2, where the main iteration (from step 6 to
step 49) consists of three major tasks: conducting a HMC iteration, estimating covariance matrix
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Algorithm 2 Maximum Conditional Entropy Sampler

Require: U(x), Accmin, N0, L0, Lmax, Nmax, NM , NL, ρ, Imax

1: Initialization: draw N0 samples {x1,x2, ...,xN0
} using standard HMC sampler.

2: Estimate the sample covariance matrix Σ̂ of {x1,x2, ...,xN0
};

3: Let M = Σ̂−1;
4: Let T = π/2;
5: Let Accold = 0, Lold = L0, L = L0, and IL = 1,IM = 0;
6: for t = N0 to Nmax do
7: ε = T/L;
8: Draw pt ∼ N(0, M);
9: (x∗, p∗) = leapfrog(xt,pt,M,U(x), ε, L);

10: Draw u ∼ U(0, 1);
11: if u < min{1, exp(H(xt,pt)−H(x∗,p∗))} then
12: xt+1 = x∗;
13: else
14: xt+1 = xt;
15: end if
16: if t mod NL = 0 then
17: Let Acc be the average acceptance probability of the last NL samples;
18: if t < NM and (IM = 1 or Acc > 0) then
19: Update the sample covariance matrix Σ̂ with the last NL samples;
20: Let M = Σ̂−1;
21: IM = 1;
22: end if
23: if IL = 1 then
24: if L = Lmax then
25: IL = 0;
26: if Acc/L < Accold/Lold then
27: L = Lold;
28: end if
29: else
30: if Acc > Accmin then
31: if Acc/L < Accold/Lold then
32: Icount = Icount + 1;
33: if Icount ≥ Imax then
34: IL = 0, L = Lold;
35: end if
36: else
37: Accold = Acc, Lold = L;
38: Icount = 0;
39: L = min{[ρLold], Lmax}
40: end if
41: else
42: Accold = Acc, Lold = L;
43: Icount = 0;
44: L = min{[ρLold], Lmax}.
45: end if
46: end if
47: end if
48: end if
49: end for
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M , and determining the number of leapfrog steps L. We provide some specific remarks on the
algorithm in the following:

• From step 7 to step 15, the algorithm conducts a usual HMC iteration:
– In step 9, the function leapfrog(xt,pt,M,U(x), ε, L) represents to solve the Hamilto-

nian system (2.3) specified by M and U(x) from the initial condition xt and pt, using
the leapfrog algorithm with stepsize ε for L steps.

• From step 16 to step 22, the algorithm adapts the covariance matrix:
– In step 18, we fix the maximum number of iterations in which we update the param-

eters to be NM .
– Steps 19 and 20 update matrix M from samples, and the formulas for these compu-

tations are Eqs. (2) and (3) in [14] respectively;
• From step 23 to step 47, the algorithm determines the value of L:

– In step 23, IL is an indicator controlling whether L will be updated: namely the
updating of L will be terminated if IL is switched to 0.

– From steps 24 to 28, the algorithm deals with the situation that L reaches a prescribed
maximum value and in this case IL is set to 0.

– Step 30 examines if the current acceptance probability Acc reaches a minimal required
value Accmin:
∗ if Acc does not reaches the minimal value Accmin, L will be increased until it

does, which is performed in steps 42 to 44.
∗ if Acc is larger than Accmin, L is iteratively increased if Acc/L continues to

increase and the updating is terminated (by setting IL = 0) if Accmin is not
increasing for a number (denoted by Imax) of successive steps; this procedure
corresponds to steps 30 to 40.

– In steps 39 and 44, we update L by multiplying the current value of it by a factor ρ.

3. Numerical examples. In this section, we provide four examples to demonstrate the per-
formance of the proposed MCE sampler (MCES). The purpose of the first example to demonstrate
that the failure of the ESJD criterion for the simple Gaussian distribution while MCE performs
well; the second example is used to test how the method performs at several different levels of
non-Gaussianity; finally the last two examples provide real-world testbeds in which we compare
the performance of the MCE method and NUTS. The code of the proposed MCE method and the
examples provided here are available at the Github repository [27].

3.1. Toy Problem: Univariate Gaussian. We first use a Gaussian example to compare
the CE criterion with ESJD. Specifically we take target distribution to be the univariate standard
Gaussian distribution N(0, 1), the kinetic energy to be K(p) = p2/2, and p0 to be standard Gaussian
as well. As has been discussed, the optimal integration time T computed by the proposed MCE
method is π/2, while that computed by ESJD is π. We thus take six different values of T : T =
0.45π, 0.49π, 0.5π, which are close to the optimal value by MCE, and T = 0.95π, 0.99π, π, which
are close to the optimal value predicted by ESJD. In all the tests we fix the starting position to be
x = 1, and since for this toy problem, we have the analytical solution (see Appendix A) and so we
do not need to use leapfrog. To demonstrate the behavior of the proposals, we plot the first 100
samples produced by each proposal in Fig. 2.1. First it can be seen here that if we use T = π which
is exactly the optimal value predicted by ESJD, the samples are fixed at x = −1 and x = 1 and in
this case the sampler fails completely. The samples deviate away from the two points as T is slightly
perturbed from π, but most samples are still concentrated near the two locations, indicating poor
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performance of the proposals. On the other hand, the samples drawn by the proposals determined
with the MCE method distribute well according to the target distribution, which demonstrates that
the integration time predicted by the MCE method does lead to good proposals in this Gaussian
example.

Parameter L0 Lmax ρ Accmin Nmax

Value 1 60 1.2 60% 10000

Parameter NL NM N0 Imax

Value 200 2000 1000 1

Table 3.1
Algorithm parameters of MCES.

3.2. Toy Problem: Rosenbrock function. Our second example is the Rosenbrock function,
an often used benchmark problem for MCMC methods. Specifically, we here use a slightly modified
version of the Rosenbrock function:

π(x1, x2) ∝ exp(−x2
1 − 100(x2 − bx2

1)2), (3.1)

where the modification allows us to control the “non-Gaussianity” of the distribution. Specifically
the distribution is exactly Gaussian for b = 0 and it departs away from Gaussian if we increase
the value of b. In Fig. 3.1 (Top), we show the distributions for b = 0.1, 0.35 and 0.7 respectively,
where we can see that the distribution departs more from Gaussian as b increases, and it becomes
significantly non-Gaussian for b is larger than 0.35. Here we shall compare the performance of MCES
and NUTS for various values of b ranging from 0.05 to 0.7, and evaluate how the non-Gaussianity
affacts the performance of MCES. To do so, for each method we repeat the simulations 100 times,
and in each simulation we draw 10000 samples with additional 1000 samples use in the burn-in
period (the setup is also used in Examples 2 and 3). The algorithm parameters of MCES used in
this examples and the following two are shown in Table 3.1. In this work NUTS is implemented
using the Matlab package [21] by Nishimura. We then compute the Effective Sample Size (ESS)
per L of each simulation, which is an often used performance measure of MCMC algorithms. The
ESS is also computed using the code in [21]:

ESS =
n

(1 + 2
∑+∞

k=1 ρ(k))
,

where n is the number of samples and ρ(k) is the auto-correlation of lag k. For better graphical
illustration of the performance, we define the following performance ratio: namely suppose that the
average ESS/L of MCES and NUTS are respectively E1 and E′1 for dimension x1, and E2 and E′2
for x2, and the performance ratio is calculated as,

Ratio =
1

2
(E1/E

′
1 + E2/E

′
2).

It should be clear that the performance ratio being larger than 1 indicates that MCES has better
performance than NUTS in terms of ESS/L, and it being less than one indicates the opposite. The
performance ratio is plotted as a function of b in Fig. 3.1 (bottom), and from the figure we can see
that the ratio is considerably larger than one in the range around 0.05 to 0.3, and is still close to
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Fig. 3.1. Top: the Rosenbrock distributions with b = 0.1, 0.35, and 0.7 from left to right. Bottom: The combined
ESS/L ratio plotted against the value of b. The black dashed line indicates a reference where the ratio is 1.

-10 -5 0 5 10 15
0

0.05

0.1

0.15

0.2

p
o
s
te

ri
o
r

5 10 15
0

0.05

0.1

0.15

0.2

0.25

p
o
s
te

ri
o
r

Fig. 3.2. The histograms of the posterior samples for µ (left) and τ (right).

one for b from 0.3 to 0.7. The results suggest that the performance of MCES does decrease as the
target distribution becomes more non-Gaussian; however we also can see that MCES still yields
comparable performance of NUTS in that regime, suggesting MCES may possibly be applied to
problems that are considerably non-Gaussian. That said, we acknowledge that the performance of
the method for strongly non-Gaussian distributions should be more throughly tested.
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θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 µ τ
MCES 10.3 7.5 6.0 7.3 5.0 6.0 10.0 7.8 7.3 5.7

(7.1) (5.8) (6.9) (6.1) (5.9) (6.2) (6.1) (7.0) (4.2) (3.6)
NUTS 10.1 7.4 6.0 7.2 5.1 6.0 9.8 7.7 7.2 5.5

(7.0) (5.8) (6.8) (6.0) (5.8) (6.1) (6.1) (6.8) (4.2) (3.7)

Table 3.2
The posterior mean and the standard deviation (in parenthesis) computed by MCES and NUTS for the Eight

School example.

3.3. Eight School problem. Our third example is the Eight School problem in [11], which
is a hierarchical Bayesian inference application. While referring interested readers to [11], we here
omit all the application background and proceed directly to the mathematical setup of the problem.
Specifically, let {θ1, ..., θ8} be the parameters of interest, and {(y1, σ1), ..., (y8, σ8)} be the data. Let
µ and τ be the hyperparameters specifying the prior of θ1, . . . , θ8. The hierarchical model is:

µ ∼ Uniform[-15,15], τ ∼ Uniform[0,15]

θi ∼ N (µ, τ), yi ∼ N (θi, σi), i = 1...8.

We use the same data as those in [11] in the inference problem, and we sample the posterior
distribution with the MCE sampler and the NUTS. First to validate the proposed method, we
draw 105 samples from the posterior distribution using both the MCE sampler and NUTS, and
the posterior means and variances for all the parameters obtained by both methods are reported
in Table 3.2, from which we can see that the results computed by both methods agree well with
each other, up to certain statistical errors. We then plot the obtained posterior histograms for µ
and τ in Fig. 3.2, and we can see from the figure that both distributions are significantly apart
from Gaussian. Next we compare the performance of the MCE sampler and NUTS. We compute
the ESS/L for the results of each simulation, which is used as a performance measure of the
samplers, and we show the box-plots of the ESS/L results in Fig. 3.3. The plots show that the
MCE sampler achieves evidently higher ESS per L than NUTS, even for the two dimensions that are
evidently non-Gaussian. Additional test results (using different algorithm parameters) are provided
in Appendix B, and the results demonstrate similar performance to those presented in this section,
suggesting that MCES is rather robust against different values of algorithm parameters.

3.4. Bayesian Logistic regression with the German credit data. Our last example
is the German credit data available at [9], a popular benchmark problem for Logistic regression.
Simply put, this problem aims to classify people described by a set of attributes as good or bad
credit risks. Here we use the modified version with all numerical attributes [9], which has 1000
instances each with a 24-dimensional numerical input and a binary output. For further details of
the dataset, please refer to the description of the data set at [9]. Here the problem is formulated as a
Logistic regression [16] and the regression coefficients β = (β0, β1, ..., βn) with n = 24 are estimated
with a Bayesian inference. The prior distribution is chosen to be standard Gaussian: βββ ∼ N (0, I).
Just like the previous example, for each method we repeat the simulations 100 times, and in each
simulation we draw 10000 samples with additional 1000 samples used for burn-in. The algorithm
parameters are the same as those used in Example 2. To validate the MCES method, we have
verified that the posterior means and variances computed by both methods agree well with each
other. Specifically in Table 3.3 we present the posterior means and variances of all the parameters
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Fig. 3.3. The box plots of the ESS per L for both the MCE sampler (MCES) and the NUTS.

computed by MCES and NUTS. Just like the Eight School example, the results of the two methods
agree well with each other, up to certain statistical errors.

We estimate the ESS/L of each dimension for each simulation, and we then compute the
mean and the standard deviation of the 100 trials. We show the results in Table 3.4, which show
that the average ESS/L of MCES is higher than twice of that of NUTS in all the 25 dimensions.
These results demonstrate that the MCES method has a good performance in the Bayesian Logistic
regression, a class of often-encountered real world problems. The good performance of the MCES
method in such problems is somehow as expected, since the posteriors in the Bayesian logistic
regression usually do not deviate vastly from Gaussian [17].

3.5. Log-Gaussian Cox Process. The Log-Gaussian Cox process (LGCP) is a widely used
model for spatial point process data [19]. Mathematically it is a hierarchical structure consisting
of a Poisson point process with a random log-intensity given by a Gaussian random field. In
practice, the Bayesian method is often used to infer the intensity function from the observation
data, and the resulting Bayesian inference problems have application in fields such as ecology,
geology, seismology, and neuroimaging [25]. Sampling the posterior distribution for the LGCP
model is computationally challenging largely due to the high dimensionality of such problems. In
this example we consider a two-dimensional spatial Bayesian inference problem with the LGCP
model. Let Ω be a two dimensional d × d spatial grid, indexed by {(i, j)|i, j = 1, ..., d}, and let
XXX = {xi,j}di,j=1 be a Gaussian process defined on Ω: namely the elements in any nonempty subset
of XXX follows a (multivariate) Gaussian distribution. Moreover, we shall assume that the Gaussian
process XXX is of a constant mean µ and a squared exponential covariance function:

Σ[(i, j), (i′, j′)] = α exp(−δ(i, i′, j, j′)/βd), with δ(i, i′, j, j′) =
√

(i− i′)2 + (j − j′)2,

where α and β are parameters that will be specified later. Next from XXX, we define the latent
intensity process Λ = {λi,j} with means λij = s exp(xij) where s is a scalar parameter. Let
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parameters β0 β1 β2 β3 β4 β5 β6

MCES −1.20 −0.73 0.42 −0.41 0.13 −0.36 −0.17
(0.09) (0.09) (0.10) (0.09) (0.10) (0.09) (0.09)

NUTS −1.20 −0.73 0.42 −0.41 0.13 −0.36 −0.17
(0.09) (0.09) (0.10) (0.10) (0.11) (0.09) (0.09)

parameters β7 β8 β9 β10 β11 β12

MCES −0.15 0.01 0.18 −0.11 −0.22 0.12
(0.08) (0.09) (0.10) (0.10) (0.08) (0.09)

NUTS −0.15 0.01 0.18 −0.11 −0.22 0.12
(0.08) (0.09) (0.09) (0.10) (0.08) (0.09)

parameters β13 β14 β15 β16 β17 β18

MCES 0.03 −0.13 −0.29 0.28 −0.30 0.30
(0.09) (0.09) (0.12) (0.08) (0.10) (0.12)

NUTS 0.03 −0.14 −0.29 0.28 −0.30 0.30
(0.09) (0.09) (0.12) (0.08) (0.10) (0.12)

parameters β20 β21 β22 β23 β24 β19

MCES 0.12 −0.06 −0.09 −0.03 −0.02 0.27
(0.14) (0.14) (0.09) (0.13) (0.12) (0.11)

NUTS 0.12 −0.06 −0.09 −0.03 −0.02 0.27
(0.14) (0.14) (0.09) (0.13) (0.12) (0.11)

Table 3.3
The posterior mean and the standard deviation (in parenthesis) computed by MCES and NUTS for the German

Credit example.

YYY = {yij |i, j,= 1, ..., d} be the data set that are observed where data points yi,j are Poisson
distributed with mean λi,j :

yi,j ∼ Poisson(·, λi,j),

and conditionally independent given the latent intensity process Λ = {λi,j}. The goal of the problem
is to compute the posterior distribution of XXX given the data set YYY .

In the numerical tests, we specify the model parameters as is in Table 3.5, and we emphasize
here that we take d = 32, resulting in a 1024 dimensional inference problem. Moreover in our tests,
the ground truth is randomly generated from the prior and then a synthetic data set is obtained
from the generative process for this model; both the ground truth and the generated data set are
shown in Fig. 3.4. We then sample the posterior distribution using both NUTS and MCES. As the
problem is of very high dimensions, we draw 5.5× 105 samples from the posterior distribution with
either method, with the first 50000 samples are used as the burn-in in both methods. We emphasize
here that we use such a large number of samples in this example because of the high dimensionality
of the problem. We compare the posterior results of both methods in Figs. 3.4: namely the first
row of the figures are from left to right respectively the ground truth of the log-intensity x, that
of the intensity λ and the observation data; the second row shows the posterior mean and variance
computed by NUTS, and the last one shows those posterior statistics computed by the proposed
MCES method. One can see that, both the posterior statistics computed by both methods agree
quite well with each other, and the posterior means are reasonably close to the ground truths, which
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parameters β0 β1 β2 β3 β4

MCES 0.1314 0.1337 0.1399 0.1315 0.1426
(0.0528) (0.0622) (0.0507) (0.0569) (0.0540)

NUTS 0.0554 0.0532 0.0524 0.0520 0.0519
(0.0049) (0.0036) (0.0033) (0.0037) (0.0035)

parameters β5 β6 β7 β8 β9

MCES 0.1344 0.1406 0.1405 0.1329 0.1373
(0.0505) (0.0539) (0.0479) (0.0553) (0.0529)

NUTS 0.0530 0.0524 0.518 0.0523 0.0521
(0.0033) (0.0032) (0.0034) (0.0034) (0.0034)

parameters β10 β11 β12 β13 β14

MCES 0.1272 0.1327 0.1302 0.1414 0.1341
(0.0533) (0.0505) (0.0580) (0.0546) (0.0522)

NUTS 0.0526 0.0524 0.0519 0.0522 0.0522
(0.0033) (0.0032) (0.0034) (0.0029) (0.0033)

parameters β15 β16 β17 β18 β19

MCES 0.1294 0.1327 0.1331 0.1346 0.1387
(0.0517) (0.0544) (0.0534) (0.0504) (0.0539)

NUTS 0.0543 0.0525 0.0532 0.0521 0.0517
(0.0033) (0.0033) (0.0034) (0.0034) (0.0033)

parameters β20 β21 β22 β23 β24

MCES 0.1418 0.1392 0.1312 0.1449 0.1402
(0.0543) (0.0563) (0.0576) (0.0514) (0.0526)

NUTS 0.0518 0.0522 0.0525 0.0522 0.0523
(0.0037) (0.0035) (0.0031) (0.0037) (0.0039)

Table 3.4
The means and standard deviations of ESS/L for MCES and NUTS in German Credit Example.

Parameter α β µ d s
Value 1.91 1/33 log 126− α/2 32 1/d2

Table 3.5
Model parameters for the LGCP example.

validates the samples drawn by both methods. Next we shall compare the sampling efficiency of
the two methods, measured by ESS/L, and we show the comparison results in Figs. 3.5. In the left
plot of Figs. 3.5 we show the ratio between the ESS/L value of MCES and that of NUTS at each
spatial point of the graph, and we can see that at each spatial point, the ratio is near three, which
means that the ESS/L value of MCES is around 3 times as much as that of NUTS at each location.
Moreover, the performance ratio is rather stable across locations, ranging between 2.8 to 3. In the
right figure of Figs. 3.5, we show the scatter plot of the ESS/L value of all the 1024 dimensions: each
dimension is represented as a scatter point with ESS/L of NUTS being the abscissa and that of
MCES being the ordinate. First we can see from the plot that all the scattering points are bounded
by the two lines y = 2.8x and y = 3x, indicating that MCES is at least 2.8 times as efficient as
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NUTS in terms of ESS/L. In addition the figure also reveals that the ESS/L results for both
methods do not vary significantly across dimensions: for NUTS the 1024 results are between 0.031
and 0.032 and for MCEC they are from 0.090 to 0.093.
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Fig. 3.4. Comparing quality of posterior distributions from samples obtained using NUTS and MCES for the
LGCP model. The top-right image shows the observation data.

4. Conclusions. In this work we propose a new KSE/CE based design criterion for tuning the
algorithm parameters in HMC. We show that the KSE/CE criterion can address some limitation
of the distance based design criteria such as ESJD. For near-Gaussian distribution we are able to
derive the analytical solution to the resulting optimization problem. We then develop an adaptive
HMC algorithm based on the results. Numerical examples demonstrate that the proposed method
has rather good performance even when the target distributions are considerably different from
Gaussian. Several issues and limitations of the method need to be addressed in the future. First,
Algorithm 1 terminates the adaptation after a fixed number of iterations, which may potentially
affect the efficiency of the algorithm, if the adaptation is terminated prematurely. To this end, an
interesting question is that whether the chain can converge without such a mandatory termination.
Moreover, the most serious restriction of the method is, of course, the near-Gaussian assumption,
which makes the method unsuitable for strongly non-Gaussian distributions, e.g., those with multi-
ple modes. It is thus of significant interest to apply the KSE/CE criterion to strongly non-Gaussian
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the dimensions.

distributions and develop suitable HMC algorithms for them. Finally, in the present algorithm we
adaptively estimate the covariance matrix which in turn defines the kinetic energy of the system,
and to this end another interesting extension is to construct the kinetic energy locally as is done in
[12], which may be a more feasible solution for strongly non-Gaussian distributions. We plan to
investigate these problems in the future.

Appendix A. Derivation of the MCE and the maximum ESJD solutions. This section
provides details of the derivation of the optimal integration time with respect to CE and with respect
to ESJD when the target distribution is N(0, k). We also take K(p) = p2/(2m) and p0 ∼ N(0,m).
In this case it is easy to derive that the solution of the Hamiltonian system is

x(t) = A cos(

√
1

km
t+ φ0), p(t) = −A

√
m

k
sin(

√
1

km
t+ φ0) (A.1a)

and the initial conditions are

x0 = A cos(φ0), p0 = −A
√
m/k sin(φ0). (A.1b)

From Eq. (A.1), we obtain

xT = A cos(

√
1

km
T + φ0)

= [x0 cos(

√
1

km
T ) + p0

√
k

m
sin(

√
1

km
T )].
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As p0 ∼ N(0,m), it follows immediately that

π(xT |x0) = N

(
x0 cos(

√
1

km
T ), k sin2(

√
1

km
T )

)
. (A.2)

Next we shall consider the two criteria separately.
First we consider the CE criterion, which seeks to maximize H[xT |x0], and since π(xT |x0) is

univariate Gaussian, it is equivalent to

max
T>0

Ex0 [log Var[xT |x0]] := log[k sin2(

√
1

km
T )]

= log[1− cos(2

√
1

km
T )] + log(

k

2
). (A.3)

It is easy to see that the solution is,

T =
1

2

√
km(π + 2Jπ),

where J is an arbitrary non-negative integer. Certainly we should take J = 0 and so we obtain the
smallest T as larger T implies higher computational cost of the numerical integration. Thus the
optimal solution with respect to the CE criterion is

T =
π

2

√
km.

Next we shall derive the optimal value of T with respect to ESJD. That is we want to solve,

max
T>0

Ex0,p0
[||xT − x0||2].

Once again from Eq. (A.1) we obtain,

xT − x0 = A cos(

√
1

km
T + φ0)−A cos(φ0)

= x0[cos(

√
1

km
T )− 1] + p0

√
k

m
sin(

√
1

km
T ).

Then we have,

Ex0,p0 ||xT − x0||2 = 2k[1− cos(

√
1

km
T )].

Thus, maximizing the ESJD becomes,

max
T>0

2k

[
1− cos(

√
1

km
T )

]
,

and the solution is

T =
√
km(π + 2Jπ),
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and for the same reason as above we take J = 0, which yields the optimal integration time with
respect to the ESJD,

T = π
√
km.

Appendix B. Additional test results for the Eight School example. We present three
additional test results for the Eight School example to demonstrate the robustness of the method
against the algorithm parameter values. Specifically we implemented the MCES with another three
different sets of parameters shown in the tables B.1-B.3 below. Compared to the parameter values
used in Section 3.3, we vary the values of three key parameters: in test 1 we change Accmin from
60% to 40%, in test 2 we change Imax from 2 to 1, and in test 3 we change Imax from 60 to
100. We plot the ESS/L results for the three tests in Figs. B.1, B.2 and B.3 respectively. The
figures demonstrate that, in all the tests, the MCE-HMC method yields evidently better ESS per L
results than NUTS, suggesting that the performance of the MCE method is not sensitive to these
parameters.

Parameter L0 Lmax ρ Accmin Nmax NL NM N0 Imax

Value 1 60 1.2 40% 10000 200 2000 1000 2

Table B.1
Algorithm parameters for test 1.

Parameter L0 Lmax ρ Accmin Nmax NL NM N0 Imax

Value 1 60 1.2 60% 10000 200 2000 1000 1

Table B.2
Algorithm parameters for test 2.

Parameter L0 Lmax ρ Accmin Nmax NL NM N0 Imax

Value 1 100 1.2 60% 10000 200 2000 1000 2

Table B.3
Algorithm parameters for test 3.
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