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Abstract: Various techniques have been developed to detect railway defects. One of the popular
techniques is machine learning. This unprecedented study applies deep learning, which is a branch
of machine learning techniques, to detect and evaluate the severity of rail combined defects. The com-
bined defects in the study are settlement and dipped joint. Features used to detect and evaluate the
severity of combined defects are axle box accelerations simulated using a verified rolling stock dy-
namic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical
data. Deep learning techniques used in the study are deep neural network (DNN), convolutional
neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways:
simplified data and raw data. Simplified data are used to develop the DNN model, while raw data
are used to develop the CNN and RNN model. For simplified data, features are extracted from raw
data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom
accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified
data for developing the DNN model. For raw data, time-domain accelerations are used directly
to develop the CNN and RNN models without processing and data extraction. Hyperparameter
tuning is performed to ensure that the performance of each model is optimized. Grid search is used
for performing hyperparameter tuning. To detect the combined defects, the study proposes two
approaches. The first approach uses one model to detect settlement and dipped joint, and the second
approach uses two models to detect settlement and dipped joint separately. The results show that the
CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to
detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies
classification and regression concepts. Classification is used to evaluate the severity by categorizing
defects into light, medium, and severe classes, and regression is used to estimate the size of defects.
From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy
of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating
settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.

Keywords: deep learning; railway infrastructure; railway combined defects; dipped joint; settlement

1. Introduction

The railway is a transportation model that plays an important role nowadays because
it is environmental-friendly, energy-saving, and safe. Therefore, the demand for the railway
is increasing. However, the investment in railway projects is high, so the load and speed
of rolling stocks are increased to meet the increasing demand for railway transportation.
The high load and speed of rolling stocks deteriorate the railway infrastructure, and rail-
way defects take place when the deterioration reaches a certain level. Railway defects
can emerge as a single defect or combined defects. Combined defects are more compli-
cated and more difficult to detect and evaluate than a single defect. Therefore, a tool to
detect and evaluate the severity of combined defects is necessary to improve the railway
maintenance capability.
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Railway defects can be inspected using a traditional technique such as visual inspec-
tion [1] or more advanced techniques such as ultrasonic [2], magnetic induction [3], acoustic
emission [4–6], and eddy current [7], which are non-destructive testing (NDT). The benefits
of NDT are less waste, less downtime, accident prevention, advanced identification, com-
prehensive testing, and increased reliability [8]. Machine learning is an NDT technique that
is popular in the present because it is fast, cost-saving, and it is proven that the performance
is satisfied. Many machine learning techniques can be used to develop models to detect and
evaluate defects. This study applies deep learning techniques to develop models because it
is proven that deep learning techniques tend to provide the better performance if they are
constructed properly [9].

This unprecedented study aims to apply deep learning techniques, namely, deep neu-
ral network (DNN), convolutional neural network (CNN), and recurrent neural network
(RNN) to detect and evaluate the severity of combined defects consisting of settlement and
dipped joint using axle box accelerations (ABA) as features. It is noted that the dipped joint
and settlement in this study are simplified to the geometrical irregularities. In fact, they can
be related to the void irregularity, which is more complicated, and further study is needed
to investigate their dynamic behavior. ABA is used to detect and evaluate the severity of
combined defects because it is one of the NDTs that requires a low installation cost, and it
can be measured continuously when the rolling stock is operated. ABA can be measured
by installing an axle box acceleration sensor to the rolling stock. The measurement can be
monitored in real time or at the end of the day and fed into the machine learning models to
detect and evaluate the severity defects. This process is an inverse analysis based on the fact
that defects will affect the ABA differently depending on the type of defect. This approach
is fast, cost-saving, and it monitors the track condition all the time. A verified simulation
called D-Track is used to generate numerical data for machine learning model development.
The expected contributions of the study are that the developed models can detect and
evaluate the severity of combined defects which will improve the railway maintenance
capability in terms of cost, time, and reliability.

2. Literature Review

Machine learning is a branch of “the study and design of intelligent agents” to achieve
a defined purpose [10]. Nowadays, machine learning is widely used in various areas
such as computer science, psychology, medical, neuroscience, cognitive science, linguistics,
engineering, etc. Machine learning can reduce human error, reduce human risk in some
situations such as railway inspection, continue working for a long time especially repetitive
tasks, work fast, and deal with complicated tasks [11].

Machine learning was adopted in the railway industry in different aspects. Huang et al. [12]
used a random forest and support vector machine to control the speed profile and calculate
the energy consumption of rolling stocks. They presented that the developed approaches
had the error of energy consumption calculation of less than 0.1 kWh and could reduce
the energy consumption by 2.84%. Alawad et al. [13] applied a decision tree to analyze
fatal accidents. Sysyn et al. [14] applied the computer vision concept to predict contact
fatigue on crossings. However, they faced a long processing time issue and claimed that
deep learning could resolve this issue.

For railway defect detection, ABA was widely used Núñez et al. [15] applied ABA to
detect squats and corrugations. The case study was from the Dutch Railway. They achieved
an accuracy of the detection of higher than 85%. Then, Li et al. [16] applied the same
concept to detect light squats. They could detect defects up to 85% using ABA, and many
studies supported this finding [17,18]. Their findings demonstrated that ABA has the
potential to be used to defect railway surface defects. This was also supported by many
studies. Song et al. [19] found the relationship between ABA and polygonized wheels under
high-speed conditions. ABA was used to predict the degradation of railway crossings [20].
Other defects can be detected using the ABA as well, such as insulated rail joint [21],
bolt tightness [22], and track geometry [23]. Machine learning techniques were also applied
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to detect railway defects. Using ABA as the input for machine learning could provide
a satisfying outcome. Table 1 summarizes machine learning techniques used to detect
railway defects and demonstrates the research gap in this area.

Table 1. Summarized list of studies using machine learning to detect railway defects.

Year Authors Defects Techniques Input Prediction

2004 Deutschl et al.
[24] Surface defect Vision-based

system Image
Defect-free,

defect,
and suspicious

2004 Mandriota et al.
[25] Corrugation

Filter-based
feature

selection
Image Defect and

no-defect

2009 Jie et al. [26] Rail head surface
defect

Vision-based
system Image Defect and

no-defect

2013 Feng et al. [27] Fastener defect Vision-based
system Image Worn and

missing fasteners

2016 Tastimur et al.
[28]

Rail surface
defect AdaBoost Image

Headcheck,
undulation,

scour,
and fracture

defects

2017 Xiong et al. [29] Rail surface
defect

3D laser
profiling
system

Surface profile

Abrasion,
corrugation,

scratch,
corrosion,

and peeling

2018 Kang et al. [30] Insulator surface
defect CNN Image Defect and

no-defect

2018 Krummenacher
et al. [31]

Flat spot,
shelling,
and non-

roundness

Support vector
machine and

DNN
Force and image Defect and

no-defect

2018 Yu et al. [32] Rail surface
defect

Coarse-to-fine
model Image Defect and

no-defect

2019 Wei et al. [9] Fastener defect Image
processing Image

Complete,
broken,

and missing
fasteners

2020 Zhang et al. [33] Broken rail
Extreme
gradient
boosting

Track
characteristics,
traffic-related
information,
maintenance

records,
and historical
defect records

Defect and
no-defect

From Table 1, it can be seen that image processing is the popular technique that is used
to detect defects. However, cameras need to be installed, and there are limitations about
the light and quality of images. Combined defects have not been comprehensively studied
because most studies considered each defect separately as well as the severity evaluation.
This is the research gap that this study aims to fulfill by developing models to detect
combined defects and evaluate the severity of defects using axel box accelerations (ABA).
The outstanding benefits of using ABA are that it requires a few additional installations
that are cost-saving, continuity of data collection, and speed of inspection.
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3. Methodology
3.1. Numerical Data Simulation and Characteristics

Machine learning models in this study are developed using numerical data simulated
by D-Track. D-Track is a simulation used to simulate the dynamic behavior of wheel
and rail in railway transportation. D-Track was developed by Cai [34] in 1996. Then,
Steffens [35] developed the DARTS (Dynamic Analysis of Rail Track Structure) model
and an interface for D-Track in 2005. He found that the accuracy of D-Track at that time
was not satisfied, because the simulated data and site data were significantly different.
Then, D-Track was improved for more accuracy by Leong [36]. He found the causes
for the D-Track’s accuracy issue, which included too-low calculated wheel–rail forces,
unnecessary assumptions in D-track, inaccurate sleeper pad reactions, and inaccurate
sleeper’s bending moment calculation. From these issues, he improved both the interface
of D-Track and its workflow to improve the performance of the simulation. From the
improvement, the simulation’s outcome was close to the site data with an error of less
than 10%. He compared the simulated results with the field data collected in Melbourne
to Geelong, Australia. The parameters used to compare were average wheel-rail contact
force, shear force, average rail acceleration, and bending moment. He also compared
results between numerical data such as DARTS (Dynamic Analysis of Rail Track Structure),
DIFF (Vehicle-Track Dynamic Analysis Model), NUCARS (New and Untried Car Analytic
Regime Simulation), SUBTTI (Subgrade-Train-Track Interaction), and VIA (Vehicle Interac-
tion with Track Analysis Model). He found that results from D-track were correlated to
other simulations. This study uses data simulated by D-Track as representatives of data
for developing machine learning models to detect and evaluate the severity of combined
defects, which are crucial to rail safety and predictive track maintenance [37–43].

To simulate the dynamic characteristic of the railway system using D-Track, various
inputs need to be defined in the simulation such as track properties (stiffness, damping,
sleepers, etc.), vehicle properties (speed, weight, wheel radius, etc.), defect properties,
and defect locations. Detailed variables are also required to define each category. Different
outputs can be reported using D-Track such as accelerations, forces, pressures, bending mo-
ments, shear forces, and displacements of each wheel and track component. As mentioned,
this study uses ABA or axle box acceleration from the simulation to develop machine
learning models because it can be measured easily in the practice.

In terms of simulation inputs, a summary of parameters is shown in Table 2.
Table 2 shows the 1650 simulations run to simulate data. Examples of ABA are shown

in Figure 1. The speed and weight of the rolling stock are 20 km/h and 40 tons respectively.
Figure 1a presents ABA when the rail is free from defect, and Figure 1b presents ABA when
the rail has the 2.5 mm dipped joint and 20 mm short settlement, as shown in Figure 2.
These two figures show that the ABAs from the defect-free rail and the rail with defects are
significantly different and easy to categorize. However, when the sizes of combined defects
vary and the defects are combined, it will be more complicated to categorize the type and
size of defect; machine learning plays an important role for this purpose. From Figure 1b,
the ABA has peak and bottom values, which will be used as simplified features. Figure 1
presents only one ABA from a wheel. From the simulation, ABAs from two wheels are
extracted and used as features.
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Table 2. A summary of varied parameters in D-Track.

Parameters Value

Sizes of dipped joint 0–10 mm (the length of the dipped joint is 1000 mm.)

Sizes of settlement 0–100 mm (the lengths of the settlement are 3000 and
10,000 mm for short and long settlement, respectively)

Speeds of vehicle 20–200 km/h

Weights of vehicle 40–80 tons

Rail type AS60

Gauge Standard gauge

Pad type HDPE

Sleeper type Prestressed

Sleeper spacing 600–750 mm

Track bed stiffness 50.1 MN/m

Track bed damping 159 kNs/m

Primary suspension stiffness 1.22 MN/n

Primary suspension damping 4 kNs/m

Wheel radius 460 mm

Hertzian contact coefficient 7.25 × 1010 N/M3/2
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Figure 1. Examples of output from D-track simulation: (a) ABA from defect-free rail; (b) ABA from
the rail with a dipped joint and settlement.
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Figure 2. Examples of profile for running the simulation (dipped joint of 2.5 mm and short settlement
of 20 mm).
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The ABA is used in two ways as mentioned: simplified data and raw data. Simplified
data are used to develop the DNN model, and raw data are used to develop the CNN
and RNN models. For simplified data, 14 features are extracted from the simulations,
which are the weight and speed of a rolling stock, three peak ABA from two wheels,
and three bottom ABA from two wheels. In case of simplified data, the ABA is the result
from simulations, but the weight and speed of a rolling stock are extracted before the
simulation. This procedure is done under the assumption that the weight and speed are
known from on-board sensors. The reason for using simplified data for the DNN model is
that it is more suitable than using raw data. The authors have tried feeding the raw data
into the DNN model where the number of input nodes is equal to the number of values.
However, the performance is not satisfying. For raw data, ABAs from two wheels are fed
into the models without processing and other features.

To process simplified data and arrange raw data, Visual Basic for Applications (VBA)
is employed. Fourteen features are extracted from simulations’ reports and combined to
create the dataset alongside raw data from each simulation. In this study, the total number
of simulations is 1650, so the number of samples is the same. Each sample is labeled in
accordance with the classes of each model. For defect severity classification, the labels are
depending on the size of the defect, as shown in Table 3.

Table 3. A summary of the label for each model.

Purpose Type of Label Label Meaning

Dipped joint severity
classification Integer

0
1
2

2.5 mm or smaller
2.5–5.0 mm

Bigger than 5.0 mm

Settlement severity
classification Integer

0
1
2

20 mm or smaller
20–60 mm

Bigger than 60 mm

3.2. AI Model Development

DNN, CNN, and RNN are employed to develop machine learning models for detecting
and evaluating the severity of combined defects. For dipped joint and settlement detection,
this study proposes two approaches. The first approach is using a single model to detect
both dipped joint and settlement. The second approach is using two independent models
to detect dipped joint and settlement separately. This is to investigate whether a model has
better performance for a more specific task. Therefore, the first approach will categorize
four classes of the sample, namely, class 0: defect-free, class 1: dipped joint, class 2:
settlement, and class 3: dipped joint and settlement. For the second approach, two models
are used to detect dipped joint and settlement separately so the classes are binary, defect,
and no defect.

For defect severity classification, samples are labeled as shown in Table 3. Models
for classifying the severity of dipped joint and settlement are developed independently.
It is noted that the second approach applies two models to detect each defect separately so
the labels shown in Table 3 are dependent on the models. That means that label 0 in the
dipped joint severity classification model is different from label 0 in the settlement severity
classification model. For defect severity regression, the models are different because they
are regression models in which the labels are real numbers. As defect severity classification,
two models are developed for dipped joint and settlement severity evaluation.

The workflow of the machine learning models for detecting and evaluating combined
defects is shown in Figure 3.
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The features used to develop the DNN model consist of 14 features, as mentioned in
the previous section. For CNN and RNN, two sets of raw data from two wheels’ ABA are
used as features. The total number of values is 6695 for each wheel.

All models are tuned by hyperparameter tuning to ensure that all models provide the
best performance. The detail is presented in the following section. In the training, samples
are split using the proportion of 70/30. The performance of developed models is evaluated
using accuracy in the case of classification and mean absolute error (MAE) in the case of
regression. The models with the highest accuracy and the lowest MAE will be selected for
further application.

3.3. Hyperparameter Tuning

Some parameters of the models are not tuned during the training. Hyperparameter
tuning is conducted to improve the performance of models and ensure that the models
provide the best performance. In this study, a grid search is used to tune hyperparameters.
The list of tuned hyperparameters of each model is shown in Table 4.

Table 4. List of tuned hyperparameters.

Model Tuned Hyperparameter

DNN

• The number of hidden layers
• The number of hidden nodes
• Activation function
• Batch size

• Learning rate
• Momentum
• Optimizer
• Dropout
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Table 4. Cont.

Model Tuned Hyperparameter

CNN

• The number of convolutional
layers

• Filter
• Kernel
• The number of max pooling

layers
• Pool size
• The number of hidden layers
• The number of hidden nodes

• Activation function
• Batch size
• Learning rate
• Momentum
• Optimizer
• Dropout

RNN

• The number of LSTM cells
• The number of hidden layer
• The number of hidden node
• Activation function
• Batch size

• Learning rate
• Momentum
• Optimizer
• Dropout

4. Results and Discussion

This section presents the results of model development and discusses them by sep-
arating them into two topics, combined defect detection and combined defect severity
evaluation. For combined defect detection, two approaches are applied as mentioned in
the previous section. The first approach is developing a model to detect dipped joint and
settlement, and the second approach is developing two models to detect dipped joint and
settlement separately. Two approaches are compared to test the hypothesis of whether
two models perform better than a single model for detecting combined defects.

The combined defect severity evaluation is presented into two topics: severity clas-
sification and severity regression. The classification is used to classify the severity of
combined defects into groups as shown in Table 3. The regression is used to predict the
size of combined defects. The performance of models is evaluated using the accuracy or
MAE depending on the models. Three deep learning techniques are used, which are DNN,
CNN, and RNN. The detail is presented as follows.

4.1. Combined Defect Detection
4.1.1. One Model for Detecting Both Dipped Joint and Settlement

There are four classes in this case, namely, no defect, dipped joint, settlement, and dipped
joint and settlement. The performance of each model is presented in Table 5.

Table 5. Performance of each model for detecting combined defects.

Model Accuracy

DNN 0.86

CNN 0.99

RNN 0.79

From Table 5, the accuracy of the CNN model is the highest followed by DNN and
RNN, respectively. Surprisingly, the accuracy of the CNN model is almost 1.00; however,
the accuracy of the RNN model is the worst, although both models use raw data as features.
The DNN model performs quite well, although it does not perform as well as the CNN
model and uses simplified data as features. From this, it can be concluded that using raw
data does not guarantee higher accuracy than using simplified data. The RNN model
has the lowest accuracy, from which it can be assumed that the technique is not suitable
for classification in this condition. This is because the RNN model will perform well
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when it deals with the time-series data and the sequence of the data is significant. In this
situation, the sequence of data is not highly related to each other. Therefore, the RNN model
performs worse than other models. Moreover, training the RNN model takes the longest
time compared to the DNN and CNN model. From the results, the CNN model is the best
model for detecting combined defects in this approach. The tuned hyperparameters of the
CNN model are shown in Table 6.

Table 6. List of tuned hyperparameters for detecting combined detects in the first approach.

Model Tuned Hyperparameter Value

CNN

The number of convolutional
layers 2

Filter 80 (conv1) and 64 (conv2)
Kernel 5

The number of max pooling
layers 2

Pool size 3
The number of hidden layers 2
The number of hidden nodes 100

Activation function ReLu (except dense3 which uses Softmax)
Batch size 64

Learning rate 0.001
Momentum 0.9
Optimizer Adam
Dropout N/A

4.1.2. Two Models for Detecting Dipped Joint and Settlement Separately

This approach is to test whether the model has better performance if there are fewer
classes to predict. Models are developed to detect dipped joint and settlement separately.
The performance of each model is presented in Table 7.

Table 7. Performance of each model for detecting dipped joint and settlement.

Model Accuracy

Dipped joint detection

DNN 0.94

CNN 1.00

RNN 0.86

Settlement detection

DNN 0.92

CNN 0.99

RNN 0.94

Total accuracy 0.99

From Table 7, the accuracy of models is calculated by multiplying the accuracy of the
best models on dipped joint and settlement detections. The CNN model also has the best
accuracy of 0.99. The overall performance of models is accorded to the first approach in
which the CNN model has the highest accuracy followed by the DNN and RNN models.
However, it is worth noting that the RNN model performs better than the DNN model in
settlement detection. Compared to the first approach, it can be seen that the performance
of models is improved when the number of classes is lower. However, the CNN model’s
accuracy does not change. This might because the accuracy of the CNN model is high and
there is no room for improvement. Although the performance of models can be improved
by reducing the number of classes, the model developed in the first approach is good
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enough to detect combined defects. The CNN models from the two approaches perform
the best and have the same accuracy of 0.99. The tuned hyperparameters of the CNN
models are shown in Table 8.

Table 8. List of tuned hyperparameters for detecting combined detects in the second approach.

Model Tuned Hyperparameter Value

CNN for detecting
dipped joint

The number of convolutional layers 2
Filter 64 (conv1) and 32 (conv2)

Kernel 7
The number of max pooling layers 2

Pool size 2
The number of hidden layers 2
The number of hidden nodes 100

Activation function ReLu (except dense3,
which uses Softmax)

Batch size 64
Learning rate 0.001
Momentum 0.9
Optimizer Adam
Dropout 0.25 (before maxpooling2)

CNN for detecting
settlement

The number of convolutional layers 2
Filter 80 (conv1) and 64 (conv2)

Kernel 6
The number of max pooling layers 2

Pool size 4
The number of hidden layers 2
The number of hidden nodes 100

Activation function ReLu (except dense3 which
uses Softmax)

Batch size 64
Learning rate 0.001
Momentum 0.9
Optimizer Adam
Dropout N/A

4.2. Combined Defect Severity Evaluation

This section presents the results from model development to evaluate the combined
defect severity after they are detected. To evaluate the severity, this study presents models
to classify the severity and estimate the size of defects. In this part, dipped joint and
settlement are considered separately, because the authors tried developing models to
consider them together and found that the accuracy is not satisfied due to a too high
number of classes to predict. Therefore, considering them separately is the better option.

4.2.1. Severity Classification

There are three classes to classify the severity of dipped joint and settlement, which are
shown in Table 3. The accuracy of the classification of each model is presented in Table 9,
and the confusion matrix of each model is presented as Tables 10 and 11, respectively.
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Table 9. Performance of each model for detecting dipped joint and settlement.

Model Accuracy

Dipped joint severity classification

DNN 0.61

CNN 0.84

RNN 0.51

Settlement severity classification

DNN 0.51

CNN 0.95

RNN 0.99

Total Accuracy 0.83

Table 10. Confusion matrix of dipped joint severity classification from the convolutional neural
network (CNN) model.

Predicted Class 0 Predicted Class 1 Predicted Class 2

Actual Class 0 75 8 16

Actual Class 1 5 69 24

Actual Class 2 1 9 189

Table 11. Confusion matrix of settlement severity classification from the recurrent neural network
(RNN) model.

Predicted Class 0 Predicted Class 1 Predicted Class 2

Actual Class 0 94 1 0

Actual Class 1 1 171 0

Actual Class 2 0 1 182

From Table 9, the CNN model is the best model for classifying the severity of dipped
joint with an accuracy of 0.84, while the accuracy of the DNN and RNN models is not
satisfied. The RNN model still performs worst for classifying the dipped severity. However,
it is surprising that the RNN model has the highest accuracy in classifying the settlement
severity with an accuracy of 0.99. This finding is conformed to the settlement detection
model that the RNN model tends to perform well when dealing with the settlement.
Therefore, the total accuracy of classifying combined defect severity is calculated from
the accuracy of the CNN model on classifying the dipped joint severity and the accuracy
of the RNN model on classifying the settlement severity, which equals 0.83. The tuned
hyperparameters of each model are shown in Table 12.
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Table 12. List of tuned hyperparameters for classifying the combined detect severity.

Model Tuned Hyperparameter Value

CNN for classifying
dipped joint severity

The number of convolutional layers 2
Filter 32

Kernel 9
The number of max pooling layers 2

Pool size 3 (maxpoo1ing1) and 6
(maxpooling2)

The number of hidden layers 2
The number of hidden nodes 80

Activation function ReLu (except dense3,
which uses Softmax)

Batch size 8
Learning rate 0.001
Momentum 0.9
Optimizer Adam
Dropout N/A

RNN for classifying
settlement severity

The number of LSTM cells 200
The number of hidden layer 2
The number of hidden node 100

Activation function ReLu (except dense3,
which uses Softmax)

Batch size 64
Learning rate 0.001
Momentum 0.9
Optimizer Adam
Dropout N/A

4.2.2. Severity Regression

Models developed in this section are different from others because they are regression
models. The output layer does not predict the class of data but the continuous value.
As mentioned, the performance of each model is evaluated using MAE, which is straight-
forward to interpret compared to other indicators. The size of the defect is not labeled as
groups, but it is directly used as a label. The performance of the severity regression or
estimation is shown in Table 13. The plots between actual data and prediction are shown
in Figures 4 and 5 for dipped joint and settlement, respectively.

Table 13. Performance of each model for estimating the size of dipped joint and settlement.

Model MAE (mm)

Dipped joint severity regression

DNN 2.01

CNN 1.25

RNN 2.54

Settlement severity regression

DNN 21.14

CNN 3.13

RNN 1.58
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From Table 13 and Figures 4 and 5, the CNN model is the best model for estimating
the size of the dipped joint with the MAE of 1.25 mm, while the MAEs of the DNN and
RNN models are lower, but the difference is not relatively high compared to the maximum
size of 10 mm. The RNN model has the highest MAE. From the previous models, it can be
concluded that the RNN model is not suitable for detecting and evaluating the dipped joint,
which can be seen from the lowest performance in every aspect. Again, the RNN model has
the lowest MAE on estimating the size of settlement, which equals 1.58 mm. Compared to
the maximum size of settlement used in this study (100 mm), the RNN model can estimate
the size of settlement with very low error. This emphasizes the performance of the RNN
model on detecting and evaluating the settlement. It can be concluded that the CNN model
is the best model for estimating the dipped joint size, and the RNN model is the best model
for estimating the settlement size, which conformed to the model performance on the
severity classification. The tuned hyperparameters of each model are shown in Table 14.
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Table 14. List of tuned hyperparameters for estimating the combined detect severity.

Model Tuned Hyperparameter Value

CNN for estimating
dipped joint severity

The number of convolutional layers 2
Filter 32 (conv1) and 64 (conv2)

Kernel 5 (conv1) and 4 (conv2)
The number of max pooling layers 2

Pool size 3 (maxpoo1ing1) and 2
(maxpooling2)

The number of hidden layers 2
The number of hidden nodes 100 (dense1) and 50 (dense2)

Activation function ReLu (except dense3,
which uses Linear)

Batch size 16
Learning rate 0.001
Momentum 0.9
Optimizer Adam
Dropout N/A

RNN for estimating
settlement severity

The number of LSTM cells 200
The number of hidden layer 2
The number of hidden node 200

Activation function ReLu (except dense3,
which uses Linear)

Batch size 8
Learning rate 0.001
Momentum 0.9
Optimizer Adam
Dropout N/A

5. Conclusions

This study is the first to apply deep learning techniques to detect and evaluate the
severity of combined defects in the railway infrastructure. Dipped joint and settlement
are used as the case study of combined defects. The numerical data are simulated using
D-Track, which is a verified simulation for studying the dynamic behavior of wheel and
rail. Various parameters are used to create the diversity of data. There are 1650 simulations
that are run. The output from the simulations that are used as features to develop the
machine learning models is ABA from two wheels. ABA is used in two ways: simplified
data and raw data. The DNN model uses the simplified data that consists of 14 features,
while the CNN and RNN models use raw data. The data are split with the proportion of
70/30 to be data and testing data.

The models for detecting combined defects are developed using two approaches:
a single model and two models for detecting combined defects. The study shows that using
a single model is good enough to detect combined defects when the best model is the CNN
model with an accuracy of 0.99. To evaluate the severity, models are developed to classify
the severity and estimate the size of defects. It is found that the CNN models have the best
performance in classifying and estimating the dipped joint with the accuracy and MAE of
0.84 and 1.25 mm respectively. However, the RNN models perform better in detecting and
estimating the settlement with the accuracy and MAE of 0.99 and 1.58 mm, respectively.

To improve this unprecedented study, site data can emphasize the reliability of the
finding in the study. The main difference between the simulated data and site data is that
there are noises in site data. Other types of defects are also able to improve the capability of
the model by increasing the variety of data. Other information is worth trying as features
for model development to support other sensors and measurements.
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