

University of Birmingham

Class-attentive diffusion network for semi-
supervised classification
Lim, Jongin; Um, Daeho; Chang, Hyung Jin; Jo, Dae Ung; Choi, Jin Young

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Lim, J, Um, D, Chang, HJ, Jo, DU & Choi, JY 2021, Class-attentive diffusion network for semi-supervised
classification. in AAAI'21 Proceedings of the Thirty-fifth AAAI Conference on Artificial Intelligence. Proceedings
of the AAAI Conference on Artificial Intelligence, no. 10, vol. 35, AAAI Press, pp. 8601-8609, 35th AAAI
Conference on Artificial Intelligence, Vancouver, Canada, 2/02/21.
<https://ojs.aaai.org/index.php/AAAI/article/view/17043>

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is an accepted manuscript version of an article first published in AAAI'21 Proceedings of the Thirty-fifth AAAI Conference on Artificial
Intelligence. The final version of record is available at https://ojs.aaai.org/index.php/AAAI/article/view/17043

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 29. Apr. 2024

https://ojs.aaai.org/index.php/AAAI/article/view/17043
https://birmingham.elsevierpure.com/en/publications/679cf627-7728-4a68-8cc7-3425e89e7a52

Class-Attentive Diffusion Network for Semi-Supervised Classification

Jongin Lim1, Daeho Um1, Hyung Jin Chang2, Dae Ung Jo1, Jin Young Choi1

1 Department of ECE, ASRI, Seoul National University
{ljin0429,daehoum1,mardaewoon,jychoi}@snu.ac.kr

2 School of Computer Science, University of Birmingham
h.j.chang@bham.ac.uk

Abstract

Recently, graph neural networks for semi-supervised classifi-
cation have been widely studied. However, existing methods
only use the information of limited neighbors and do not deal
with the inter-class connections in graphs. In this paper, we
propose Adaptive aggregation with Class-Attentive Diffusion
(AdaCAD), a new aggregation scheme that adaptively aggre-
gates nodes probably of the same class among K-hop neigh-
bors. To this end, we first propose a novel stochastic process,
called Class-Attentive Diffusion (CAD), that strengthens at-
tention to intra-class nodes and attenuates attention to inter-
class nodes. In contrast to the existing diffusion methods with
a transition matrix determined solely by the graph structure,
CAD considers both the node features and the graph struc-
ture with the design of our class-attentive transition matrix
that utilizes a classifier. Then, we further propose an adap-
tive update scheme that leverages different reflection ratios
of the diffusion result for each node depending on its local
class-context. As the main advantage, AdaCAD alleviates the
problem of undesired mixing of inter-class features caused
by discrepancies between node labels and the graph topol-
ogy. Built on AdaCAD, we construct a simple model called
Class-Attentive Diffusion Network (CAD-Net). Extensive ex-
periments on seven benchmark datasets consistently demon-
strate the efficacy of the proposed method and our CAD-Net
significantly outperforms the state-of-the-art methods. Code
is available at https://github.com/ ljin0429/CAD-Net.

1 Introduction
Semi-supervised learning is a long-standing problem in ma-
chine learning. Many semi-supervised learning algorithms
rely on the geometry of the data induced by both labeled and
unlabeled data points (Chapelle, Scholkopf, and Zien 2006).
Since this geometry can be naturally represented by a graph
whose nodes are data points and edges represent relations
between data points, graph-based semi-supervised learning
has been extensively studied for decades (Zhu, Ghahramani,
and Lafferty 2003; Zhou et al. 2004; Belkin, Niyogi, and
Sindhwani 2006; Yang, Cohen, and Salakhutdinov 2016;
Kipf and Welling 2016). In this paper, we focus on the prob-
lem of semi-supervised node classification on graphs.

Graph Neural Networks (GNNs) have achieved remark-
able progress in this field recently (Zhou et al. 2018; Wu

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2020; Zhang, Cui, and Zhu 2020). In particular, graph
convolutions (Kipf and Welling 2016; Gilmer et al. 2017)
have received great attention due to its flexibility and good
performances. Underlying these methods is a neighborhood
aggregation that forms a new representation of a node by ag-
gregating features of itself and its neighbors. The neighbor-
hood aggregation is essentially a type of Laplacian smooth-
ing (Li, Han, and Wu 2018), i.e., making the features of
neighboring nodes similar, which makes the subsequent
classification task easier. Built on this, several methods have
developed the weighted aggregation using attention mecha-
nisms (Veličković et al. 2017; Thekumparampil et al. 2018;
Zhang et al. 2018) where the attention weights are deter-
mined by the features of each neighboring node pair.

However, one of the fundamental weaknesses with neigh-
borhood aggregation methods is the lack of ability to capture
long-range dependencies caused by over-smoothing (Chen
et al. 2019). When stacking multiple layers to expand their
range, the diameter of the smoothed area grows large, and
eventually, the node representations in the entire graph be-
come indistinguishable. Although there have been miscella-
neous efforts to overcome this issue (Xu et al. 2018; Abu-El-
Haija et al. 2019; Wu et al. 2019), the range of these methods
is still limited. Therefore, it is desirable to have the ability to
propagate the label information over long-range, especially
for large graphs or under sparsely labeled settings.

Recently, diffusion-based methods (Klicpera, Bojchevski,
and Günnemann 2018; Jiang et al. 2019; Klicpera, Weißen-
berger, and Günnemann 2019) have demonstrated the capa-
bility of capturing long-range dependencies without leading
to over-smoothing. These methods utilize graph diffusion as
an alternative to neighborhood aggregation. Graph diffusion
is a Markov process which spreads the information from
the node to the adjacent nodes at each time step (Masuda,
Porter, and Lambiotte 2017). Theoretically, K-steps of fea-
ture diffusion means that features of up to K-hop neighbors
are aggregated to each node. This aggregation-by-diffusion
scheme allows the model to achieve a larger range without
changing the neural network, whereas in the neighborhood
aggregation scheme expanding the range would require ad-
ditional layers. However, a major limitation of these meth-
ods is that they only utilize the graph structure with a transi-
tion matrix of diffusion determined by the graph adjacency
matrix. Since edges in real graphs are often noisy (Khan, Ye,

and Chen 2018) and could contain additional information,
there exist discrepancies between node labels and the graph
structure (Chen et al. 2019), i.e., some nodes may have more
inter-class neighbors. Thus, the aggregation scheme deter-
mined solely by the graph structure may lead to corrupted
representations due to the inter-class connections.

To address the aforementioned limitation, we propose
Class-Attentive Diffusion (CAD), a novel stochastic process
that strengthens attention to intra-class nodes and attenuates
attention to inter-class nodes by considering both the node
features and the graph structure. The proposed CAD atten-
tively aggregates nodes probably of the same class among
K-hop neighbors so that the feature representations of the
same class become similar. Then, we further propose a novel
adaptive update scheme that assigns proper reflection ratios
of the CAD result for each node depending on its local class-
context. If a node has many inter-class neighbors, our adap-
tation scheme puts more weights on the node’s original fea-
ture than the aggregated feature by CAD and vice versa. In
this work, we call the overall scheme as Adaptive aggrega-
tion with CAD (AdaCAD). Built on AdaCAD, we construct
a simple model called Class-Attentive Diffusion Network
(CAD-Net). Through extensive experiments, we validate the
proposed method and show that AdaCAD enables the model
to embed more favorable feature representations for bet-
ter class separation. Our CAD-Net significantly outperforms
the state-of-the-art methods on 7 benchmark datasets from 3
different graph domains.

2 Related Work
2.1 Graph Neural Networks
In recent literature on GNNs, there are two mainstreams:
spectral-based methods and spatial-based methods. The
spectral-based methods (Bruna et al. 2013; Henaff, Bruna,
and LeCun 2015; Defferrard, Bresson, and Vandergheynst
2016; Kipf and Welling 2016) developed graph convolutions
in the spectral domain using the graph Fourier transform.
However, these methods do not scale well with large graphs
due to the computational burden. The spatial-based meth-
ods (Niepert, Ahmed, and Kutzkov 2016; Gilmer et al. 2017;
Hamilton, Ying, and Leskovec 2017; Veličković et al. 2017;
Monti et al. 2017), on the other hand, defined convolution-
like operations directly on the graph based on the neigh-
borhood aggregation. The spatial-based methods, in partic-
ular, GCN (Kipf and Welling 2016), MPNN (Gilmer et al.
2017), and SAGE (Hamilton, Ying, and Leskovec 2017)
have received considerable attention due to its efficiency and
superior performance. Built on the neighborhood aggrega-
tion scheme, numerous variants have been proposed. In the
following, we categorize recent methods into three groups
based on what they leverage to improve the model.

(i) Extended Aggregation. Mixhop (Abu-El-Haija et al.
2019) concatenates aggregated features from neighbors at
different hops before each layer, while in JK (Xu et al. 2018),
skip connections are exploited to jump knowledge to the last
layer. In SGC (Wu et al. 2019), multi-layers of GCN (Kipf
and Welling 2016) are simplified into a single layer using the
K-th power of an adjacency matrix, which means that the

aggregation extends to the K-hop neighbor. These methods
use an extended neighborhood for aggregation. However, the
range of these methods is still limited, attributed to the low
number of layers used.

(ii) Feature Attention. Attention-based method such as
GAT (Veličković et al. 2017), AGNN (Thekumparampil
et al. 2018), and GaAN (Zhang et al. 2018) have utilized at-
tention mechanisms to develop weighted aggregation where
the weighting coefficients are determined by the features
of each neighboring node pair. However, the aggregation
of these methods is still limited to 1-hop neighbor. Mean-
while, Graph U-Nets (Gao and Ji 2019) proposed graph
pooling and unpooling operations based on feature attention
and then, developed an encoder-decoder architecture in anal-
ogy to U-Net (Ronneberger, Fischer, and Brox 2015). How-
ever, the pooling operation proposed in their method does
not take the graph structure into account but only depends
on the node features (Lee, Lee, and Kang 2019).

(iii) Graph Diffusion. Recently, there have been several
attempts utilizing graph diffusion. These methods aggregate
features by propagation over nodes using random walks (At-
wood and Towsley 2016; Ying et al. 2018; Ma, Li, and Wang
2019), Personalized PageRank (PPR) (Klicpera, Bojchevski,
and Günnemann 2018), Heat Kernel (HK) (Xu et al. 2019),
and regularized Laplacian smoothing-based diffusion meth-
ods (Jiang et al. 2019). Meanwhile, GDC (Klicpera, Weißen-
berger, and Günnemann 2019) utilizes generalized graph
diffusion (e.g. PPR and HK) to generate a new graph, then
use this new graph instead of the original graph to improve
performance. However, all of the aforementioned methods
do not take node features into account in their diffusion.

2.2 Random Walks on Graph
Random walks have been extensively studied in classical
graph learning; see (Lovász et al. 1993; Masuda, Porter,
and Lambiotte 2017) for an overview of existing methods.
In particular, random walks were used in the field of un-
supervised node embedding (Perozzi, Al-Rfou, and Skiena
2014; Grover and Leskovec 2016; Tsitsulin et al. 2018;
Abu-El-Haija et al. 2018). Unlike these methods, the pro-
posed method aims to embed a more favorable node repre-
sentation for semi-supervised classification. To achieve this,
the proposed diffusion is class-attentive by considering the
node features as well as the graph structure, while in those
methods, it only depends on the graph adjacency matrix.
In (Wu et al. 2012; Wu, Li, and Chang 2013), Partially
Absorbing Random Walk (PARW), a second-order Markov
chain with partial absorption at each state, was proposed for
semi-supervised learning. Co- & Self-training (Li, Han, and
Wu 2018) utilized PARW for label propagation, presenting
learning techniques that add highly confident predictions to
the training set. However, the state distribution of PARWs is
also determined solely by the graph structure. Recently, sev-
eral methods (Lee, Rossi, and Kong 2018; Akujuobi et al.
2019, 2020) adopted reinforcement learning that aims to
learn a policy that attentively selects the next node in the
RW process. However, unlike the proposed method, their at-
tention does not explicitly utilize class similarity since they
employed additional modules to learn the policy.

3 Proposed Method
3.1 Problem Setup
Formally, the problem of semi-supervised node classifica-
tion considers a graph G = (V, E , X) where V = {vi}Ni=1
is the set of N nodes, E denotes the edges between nodes,
and X ∈ RN×D is a given feature matrix, i.e., xi, i-th row
of X , is D-dimensional feature vector of the node vi. Since
edge attributes may not be given, we consider unweighted
version of the graph represented by an adjacency matrix
A = [aij] ∈ RN×N where aij = 1 if E(i, j) 6= 0 and
aij = 0 otherwise. We denote the given label set as YL as-
sociated with the labeled node set VL, i.e., yi ∈ YL be an
one-hot vector indicating one of C classes for vi. We focus
on the transductive setting (Yang, Cohen, and Salakhutdi-
nov 2016) which aims to infer the labels of the remaining
unlabeled nodes based on (X,A, YL).

In general, the model for semi-supervised node classifica-
tion can be expressed as

Z = fθ(X,A) and ŷi = gφ(zi) (i = 1, 2, · · · , N) (1)

where fθ is a feature embedding network to embed the fea-
ture representations Z from (X,A), and gφ is a node clas-
sifier predicting ŷi from zi, i-th row of Z. The feature em-
bedding network fθ is realized by GNNs in recent literature.
The process of GNN can be decomposed into two steps: fea-
ture transformation and feature aggregation where the for-
mer stands for a non-linear transformation of node features
and the latter refers to the process of forming new represen-
tations via aggregating proximal node features.

In this paper, we focus on the process of feature aggre-
gation. More specifically, we aim to design an aggregation
scheme which can be applied right before the classifier from
Eq. (1) to embed more favorable feature representations
for class separation. To this end, we first propose a novel
Class-Attentive Diffusion (CAD), which attentively aggre-
gates nodes probably of the same class among K-hop neigh-
bors so that the representations of the same class become
similar (see Section 3.2). Given Z ∈ RN×F , CAD produces
new feature representations Z(CAD) ∈ RN×F as follows,

Z(CAD) ← CAD(Z,A, {gφ(zi)}Ni=1). (2)

Note that the node features (Z), the graph structure (A), and
the class information (gφ) are jointly utilized. Then, we fur-
ther propose Adaptive aggregation with CAD (AdaCAD)
that leverages different reflection ratios of the diffusion re-
sult for each node depending on the local class-context (see
Section 3.3). That is, AdaCAD produces the final feature
representations Z(AdaCAD) ∈ RN×F as follows,

Z(AdaCAD) ← AdaCAD(Z,Z(CAD),Γ) (3)

where Γ assigns proper weights between Z and Z(CAD) for
each node. Built on AdaCAD, we construct a simple model
called Class-Attentive Diffusion Network in Section 3.4.

3.2 Class-Attentive Diffusion
In this section we present a novel stochastic process called
Class-Attentive Diffusion (CAD), which combines the ad-
vantages of both the attention mechanism and the diffusion

process. The proposed CAD consists of N Class-Attentive
Random Walks (CARWs) starting at each node in the graph.
For clarity, we first explain how a single CARW is defined.

Suppose a CARW that starts from the node vi. The walker
determines the next node among the neighbor by comparing
the class likelihood given the node features, i.e., comparing
pi = p(yi|zi) and pj = p(yj |zj) for j ∈ N (i). Our design
objective is that the more similar pi and pj , the more likely
the walker moves from vi to vj . To this end, we define the
transition probability from vi to vj as

Tij = softmaxj∈N (i)(p
T
i pj). (4)

Note that, pi is a categorical distribution of which c-th el-
ement pi(c) is the probability of node i belongs to class c.
Thus, the cosine distance between pi and pj (i.e., pTi pj)
can be one possible solution for measuring the similarity
between them. However, the true class likelihood pi is in-
tractable. Instead, we approximate the true distribution by
exploiting the classifier gφ in Eq. (1) where the probability
of each class is inferred by gφ based on the node feature zi.
That is,

pi ≈ p(ŷi|zi) = gφ(zi). (5)
As the learning progresses, the transition matrix in Eq. (4)
gradually becomes more class-attentive by means of gφ.
This is the key difference from the recent diffusion-based
methods, APPNP (Klicpera, Bojchevski, and Günnemann
2018), GDEN (Jiang et al. 2019), and GDC (Klicpera,
Weißenberger, and Günnemann 2019), where the transition
matrix is determined solely by the adjacency matrix.

Let a row vector π(t)
i ∈ RN be the state distribution of

the CARW after t steps. This can be naturally derived by a
Markov chain, i.e., π(t+1)

i = π
(t)
i T , where the initial state

distribution π(0)
i be a one hot vector indicating the starting

node vi. Then, this can be naturally extended to CAD where
Π(K) ∈ RN×N be the state distribution matrix after K-
steps of CAD with entries Π(K)(i, j) = π

(K)
i (j).

Now, we can define a new aggregation method with K-
steps of CAD, which forms a new feature representation of
the node vi as follows,

z
(CAD)
i =

∑
j

π
(K)
i (j) · zj . (6)

Note that π(K)
i (j) is zero for vj beyond K-hop from vi.

Hence, π(K)
i (j) naturally reflects the class similarity as it

grows with the similarity between pi and pj . That is, z(CAD)
i

is essentially an attentive aggregation of K-hop neighbors
where CAD strengthens attention to intra-class nodes and
attenuates attention to inter-class nodes.

3.3 Adaptive Aggregation with CAD
In this section, we present Adaptive aggregation with CAD
(AdaCAD). We start by introducing our motivation. In real
graphs, some nodes may be connected to nodes of various
classes, or even worse, nodes of the same class may not
even exist in their neighbors. Intuitively, in these cases, ag-
gregated features from neighbors may lead to corrupted rep-
resentations due to the inter-class connections. Therefore, it

should be needed to adaptively adjust the degree of aggrega-
tion for each node depending on its local class-context.

Motivated by this, we define AdaCAD to form a new fea-
ture representation of the node vi as follows,

z
(AdaCAD)
i = (1− γi) · zi + γi · z(CAD)

i . (7)

Here, γi ∈ [0, 1] controls the trade-off between its own node
feature zi and the aggregated feature z(CAD)

i from Eq. (6)
by considering the local class-context of vi. For the node
with neighbors of the same class, γi should be a large value
to accelerate proper smoothing. In the opposite situation, γi
should be adjusted to a small value to preserve its original
feature and avoid undesired smoothing.

To this end, we define a control variable ci as

ci =
1

deg(i)

∑
j∈N (i)

gφ(zi)
T gφ(zj) (8)

where deg(i) is the degree of vi and gφ is the aforemen-
tioned classifier. Then, the range of ci would be 0 ≤ ci ≤ 1.
The meaning of ci is that the more nodes of the same class in
the neighborhood, the greater the value of ci and vice versa.
Therefore, we set up an adaptive formula for γi as

γi = (1− β)ci + βγu (9)

where γu = 1 is the upper bound of γi to keep 0 ≤ γi ≤ 1
for interpolation of each node feature and the diffusion re-
sult. Note that γi divides ci and γu internally in the ratio
of β : (1 − β) where β ∈ [0, 1] controls the sensitivity of
how much γi will be adjusted according to ci. Since different
graphs exhibit different neighborhood structures (Klicpera,
Bojchevski, and Günnemann 2018), the sensitivity β is de-
termined empirically for each dataset.

Now, we conclude the section with the overall formula
of the proposed AdaCAD in a matrix form. By letting
Γ = diag(γ1, γ2, · · · , γN) and combining Eq. (6) and (7)
together, the entire aggregation scheme of AdaCAD can be
expressed as follows,

Z(AdaCAD) = (I− Γ) · Z + Γ ·Π(K) · Z (10)

where Π(K) is the state distribution matrix after K-steps of
CAD. Note that AdaCAD does not require additional learn-
ing parameters since we utilize the classifier gφ.

3.4 Class-Attentive Diffusion Network
Built on AdaCAD, we construct Class-Attentive Diffu-
sion Network (CAD-Net) for semi-supervised classification.
CAD-Net consists of the feature embedding network fθ fol-
lowed by AdaCAD and the classifier gφ as defined in Eq. (1),
(3) and (10). More specifically, we realize fθ with 2-layers
of MLP for simplicity, as the process of feature aggregation
can be sufficiently performed in AdaCAD, and gφ is realized
by the softmax function, i.e., ŷi = gφ(zi) = softmax(zi) as
in other literature (Kipf and Welling 2016; Wu et al. 2019;
Jiang et al. 2019), and thus the dimension of zi is set to
the number of classes. The whole network parameters can
then be trained in an end-to-end manner by minimizing the
cross-entropy loss function Lsup over all labeled nodes. By

Table 1: Dataset statistics.

Dataset Nodes Edges Features Classes

CITESEER 3327 4552 3703 6
CORA 2708 5278 1433 7
PUBMED 19717 44324 500 3
AMAZON COMP. 13752 245861 767 10
AMAZON PHOTO 7650 119081 745 8
COAUTHOR CS 18333 81894 6805 15
COAUTHOR PHY. 34493 247962 8415 5

minimizing the cross-entropy between the label yi and the
prediction ŷi for all yi ∈ YL, the model can be learned to
enhance the element of zi that corresponds to the index indi-
cating the class of yi, which facilitates the class separation.
In addition to Lsup, we consider another regularization ob-
jective. As defined in Eq. (4) and (5), the transition matrix
of CAD is determined by pi where the initial distribution pi
for each node should generally be close to a one-hot vector
such that the resulting transition matrix becomes more class-
attentive. Thus, we regularize the entropy of pi by minimiz-
ing Lent =

∑N
i=1H(pi) whereH denotes the entropy func-

tion. During training, Lsup and Lent are jointly minimized
by using Adam optimizer (Kingma and Ba 2014). We report
the detailed implementation in Appendix A.1

4 Experiments
4.1 Datasets
We conducted experiments on 7 benchmark datasets from 3
different graph domains: Citation Networks (CiteSeer, Cora,
and PubMed), Recommendation Networks (Amazon Com-
puters and Amazon Photo), and Co-authorship Networks
(Coauthor CS and Coauthor Physics). CiteSeer, Cora, and
PubMed are citation networks where each node represents
a document and each edge represents a citation link. Node
features are bag-of-words descriptors of the documents, and
class labels are given by the document’s fields of study.
Amazon Computers and Amazon Photo are segments of
Amazon co-purchase graph. Here, each node represents a
product and each edge indicates that two goods are fre-
quently bought together. Node features are bag-of-words de-
scriptors which encode the product reviews, and class labels
are given by the product category. Coauthor CS and Coau-
thor Physics are co-authorship networks based on MS Aca-
demic Graph where each node represents an author and an
edge is connected if they have co-authored a paper. Node
features represent paper keywords for each author’s papers,
and class labels indicate the most active fields of study for
each author. Table 1 summarizes the dataset statistics.

4.2 Experimental Setup
For citation networks, we followed the standard bench-
mark setting suggested in (Yang, Cohen, and Salakhutdinov
2016). We evaluated on the same train/validation/test split,
which uses 20 nodes per class for train, 500 nodes for val-
idation, and 1000 nodes for test. For the credibility of the

1https://github.com/ ljin0429/CAD-Net

Figure 1: Accuracy (%) with different hidden units. Note that GCN, APPNP, and the proposed CAD-Net have the same number
of parameters. For all datasets, CAD-Net significantly outperform GCN and APPNP with the same number of parameters.

results, we report the average accuracy (%) with the stan-
dard deviation evaluated on 100 independent runs.

For recommendation and co-authorship networks, we
closely followed the experimental setup in (Chen et al.
2019). We used 20 nodes per class for train, 30 nodes per
class for validation, and the rest nodes for test. We randomly
split the nodes and report the average accuracy (%) with the
standard deviation evaluated on 100 random splits.

We compared the proposed method with the following
12 state-of-the-art methods: Cheby (Defferrard, Bresson,
and Vandergheynst 2016), GCN (Kipf and Welling 2016),
SAGE (Hamilton, Ying, and Leskovec 2017), JK (Xu et al.
2018), MixHop (Abu-El-Haija et al. 2019), SGC (Wu
et al. 2019), AGNN (Thekumparampil et al. 2018),
GAT (Veličković et al. 2017), Graph U-Nets (Gao and
Ji 2019), APPNP (Klicpera, Bojchevski, and Günnemann
2018), GDC (Klicpera, Weißenberger, and Günnemann
2019), and GDEN (Jiang et al. 2019). In all experiments,
the publicly released codes were employed.

4.3 Model Analysis
In this section, we provide comprehensive analysis of the
proposed method on CiteSeer, Cora, and PubMed as they are
the most widely used benchmark datasets in the literature.

Influence of AdaCAD. To verify the effectiveness of Ada-
CAD, we compared AggCAD with 7 different aggregation
methods. For a fair comparison, only AdaCAD is replaced
with the same CAD-Net architecture. Firstly, we consider
4 diffusion methods including Random Walks (RW), sym-
metric Normalized Adjacency matrix (symNA), Personal-
ized PageRank (PPR) (Page et al. 1999), and Heat Kernel
(HK) (Kondor and Lafferty 2002). For RW and symNA,
the transition matrix is defined as D−1A and D−

1
2AD−

1
2

respectively, and we proceed K-steps of feature diffusion
according to their transition matrix. For PPR and HK, the
closed-form solution of the diffusion state distribution is
used as in (Klicpera, Weißenberger, and Günnemann 2019).
Secondly, we consider 2 attentive diffusion variants. To the
best of our knowledge, CAD is the first attempt that in-
corporates the feature attention and the diffusion process.
Therefore, we construct GAT+RW and TF+RW based on
GAT (Veličković et al. 2017) and Transformer (Vaswani

Table 2: Accuracy (%) with different aggregation methods.
Note that only the aggregation part (AdaCAD) is switched
from the same CAD-Net architecture.

CITESEER CORA PUBMED

RW 71.5± 0.5 82.4± 0.5 79.6± 0.4
symNA 71.4± 0.6 82.1± 0.5 79.8± 0.3
PPR 72.5± 0.9 82.8± 0.6 79.3± 0.6
HK 71.8± 0.5 82.3± 0.6 79.4± 0.5

GAT+RW 70.2± 1.4 81.3± 1.4 77.7± 1.0
TF+RW 70.4± 1.5 82.8± 1.2 78.6± 1.1

CAD 73.5± 0.5 83.7± 0.5 80.2± 0.5
AdaCAD 74.1± 0.4 84.3± 0.5 82.3± 0.4

et al. 2017) respectively. In GAT+RW, the transition is de-
fined by the attention value computed by GAT, and we pro-
ceed K-steps of feature diffusion according to it. Likewise,
in TF+RW, the transition is defined by Transformer-style at-
tention, i.e., Tij = softmaxj(fQ(zi)

T fK(zj)). Lastly, we
consider the model that only uses CAD for aggregation.

Table 2 shows the overall comparisons with the afore-
mentioned variants. Compared to RW, sym, PPR, and HK,
which only utilize the graph structure, our variants (CAD-
only and AggCAD) show superior results. The better per-
formance comes from the proposed class-attentive transition
matrix both utilizing node features and the graph structure.
While GAT+RW and TF+RW can utilize both node fea-
tures and the graph structure, the performances are not suf-
ficient, which demonstrate the effectiveness of our design of
class-attentive diffusion. Lastly, AdaCAD shows better per-
formance than only using CAD. By means of Γ in AdaCAD,
the model prevents undesired mixing from inter-class neigh-
bors, which provides additional performance gains to CAD.

Influence of Hidden Units. Unlike attention-based meth-
ods (AGNN and GAT), the proposed CAD can be self-
guided by the classifier without the need for additional pa-
rameters for attention. Thus, the total number of parameters
can be implemented in the same way as the vanilla GCN.
To validate the effectiveness of AdaCAD, we evaluated the
performance across the different numbers of hidden units in
the feature embedding network fθ, and compared the re-

Figure 2: Accuracy (%) with different numbers of labeled nodes per class. The proposed CAD-Net shows robust and superior
performance for all settings.

Figure 3: Accuracy (%) with varying ranges of the model. The proposed CAD-Net shows superior performance regardless of
the different ranges. The dominance of CAD-Net increases for a longer range.

sults with GCN and APPNP which have the same number
of parameters. As shown in Figure 1, CAD-Net shows ro-
bust performance with respect to the number of hidden units.
Further, for all experiments, we can observe that CAD-Net
significantly outperforms GCN and APPNP with the same
number of parameters. This demonstrates that the superior
performance of CAD-Net is attributed to the proposed Ada-
CAD, not the power of the feature embedding network.

Influence of β. We also analyzed the influence of the hy-
perparameter β which controls the sensitivity of how much γ
will be adjusted. Due to the space limit, we attach the results
to Appendix B.4. While the optimum differs slightly for
each dataset, we consistently found that any β ∈ [0.65, 0.95]
achieves the state-of-the-art performances.

Different Label Rates. We then explored how the num-
ber of training nodes per class impacts the accuracy of the
models. The ability to maintain robust performance even un-
der very sparsely labeled settings is important. We compared
the performances when the number of labeled nodes per
class is changed to 20, 15, 10, and 5. The overall results are

presented in Figure 2. CAD-Net shows robust and superior
performance even under the very sparsely labeled setting
and outperforms all other methods. Note that, the diffusion-
based methods (APPNP and GDC) do not show satisfactory
results despite their wide range. This is because these meth-
ods only utilize the graph structure. In contrast, the proposed
method aggregates nodes from a wide range and the impor-
tance of each node reflects both node features and the graph
structure, which contributes to the superior performances of
CAD-Net. Especially, the superiority of CAD-Net is more
obvious in PubMed which is a large dataset. This further
demonstrates the effectiveness of the proposed method.

Different Ranges. Figure 3 shows influence of the dif-
ferent ranges. As expected, the neighborhood aggregation
methods degrade performance with increasing layers. While
the diffusion-based methods maintain the performance with
increasing ranges, CAD-Net shows superior performance
for all ranges. Also, as in the previous experiment, the supe-
riority of CAD-Net is particularly evident in PubMed, which
suggests that the proposed method is able to accommodate
larger graphs or sparsely labeled settings.

Table 3: Accuracy (%) under standard benchmark setting. For all experiments, we report the performance evaluated over 100
independent runs. OOM denotes out-of-memory. (*We report the numbers taken from their paper since the code is not available.)

Type Method CITESEER CORA PUBMED AMAZON
COMP.

AMAZON
PHOTO

COAUTHOR
CS

COAUTHOR
PHYSICS

Vanilla
Cheby 70.7± 0.5 81.4± 0.5 75.2± 1.4 76.2± 2.4 85.9± 2.3 OOM OOM
GCN 71.1± 0.7 81.3± 0.7 79.0± 0.5 78.7± 3.3 88.9± 1.9 91.3± 0.6 93.3± 0.8
SAGE 70.9± 0.7 81.4± 0.7 78.7± 0.4 78.9± 2.1 89.4± 1.8 91.6± 0.6 93.1± 0.8

Extended
Aggregation

JK 69.1± 1.1 81.2± 0.8 78.7± 0.5 79.0± 3.7 89.1± 2.0 91.7± 0.5 93.2± 0.9
MixHop 71.5± 0.8 82.0± 1.0 79.4± 0.5 79.5± 2.8 88.8± 1.7 OOM OOM
SGC 71.9± 0.1 81.0± 0.2 78.9± 0.1 81.5± 1.8 90.0± 1.5 91.2± 0.6 92.9± 1.0

Feature
Attention

AGNN 71.5± 0.7 82.8± 0.6 79.3± 0.8 73.5± 2.7 88.0± 3.4 92.1± 0.6 93.8± 0.7
GAT 72.5± 0.8 83.1± 0.8 79.0± 0.3 80.5± 2.2 90.6± 1.2 91.0± 0.5 93.1± 0.6
U-Nets 70.2± 1.0 82.9± 0.7 78.0± 0.5 76.9± 2.1 87.1± 1.8 91.7± 1.0 93.4± 0.7

Graph
Diffusion

APPNP 71.8± 0.5 82.9± 0.5 79.7± 0.3 81.0± 1.9 90.5± 1.6 92.3± 0.4 93.5± 0.7
GDC 72.7± 0.8 82.7± 0.7 78.1± 0.3 81.6± 2.8 88.8± 1.7 OOM 92.7± 0.8
*GDEN 72.8 82.0 78.7 - - - -

Proposed CAD-Net 74.1± 0.4 84.3± 0.5 82.3± 0.4 82.1± 2.0 90.9± 1.5 93.5± 0.6 94.7± 0.4

Table 4: Average accuracy (%) evaluated on 100 Random
train/validation/test splits.

Method CITESEER CORA PUBMED

Cheby 69.1± 1.9 77.8± 2.3 73.1± 3.2
GCN 68.3± 1.9 79.3± 1.8 77.2± 2.6
SAGE 68.8± 1.8 79.8± 1.7 77.2± 2.5

JK 67.5± 1.9 78.6± 1.9 77.7± 2.7
MixHop 68.4± 1.7 80.7± 1.7 77.8± 2.5
SGC 69.2± 1.7 79.9± 1.8 77.0± 2.6

AGNN 69.4± 1.8 80.8± 1.8 78.0± 2.4
GAT 70.0± 1.9 81.6± 1.5 77.3± 2.4
U-Nets 67.9± 1.9 81.2± 1.9 77.8± 2.6

APPNP 69.9± 1.7 81.8± 1.5 78.8± 2.5
GDC 70.9± 1.7 81.9± 1.5 76.9± 2.4

CAD-Net 71.1± 1.6 82.4± 1.4 79.6± 2.4

4.4 Comparison with State-of-the-art Methods
Evaluation on Benchmark Datasets. Table 3 shows the
overall results under standard benchmark settings. In all ex-
periments, the proposed CAD-Net shows superior perfor-
mance to other methods. We also provide statistical analysis
of the results in Appendix B.6, demonstrating that CAD-Net
achieves statistically significant improvements. The better
performance of CAD-Net comes from the proposed adaptive
aggregation scheme based on the class-attentive diffusion
both utilizing node features and the graph structure in the
transition matrix. In addition, we provide further compar-
isons with the latest methods (Liu, Gao, and Ji 2020; Chen
et al. 2020; Hassani and Khasahmadi 2020; Zhu et al. 2020;
Zhang et al. 2020) and our CAD-Net still achieves state-of-
the-art performance (see Appendix B.7).

Computational Complexity. In terms of memory require-
ment, CAD-Net is as efficient as APPNP with the same num-
ber of parameters (see Figure 1). Only one forward operation

is additionally required to obtain our class-attentive transi-
tion probability. To further validate the computational effi-
ciency of CAD-Net, we compared the average training time
per epoch (ms) measured on a single Nvidia GTX 1080 Ti
machine. As expected, we confirmed that CAD-Net is on par
with APPNP and much faster than GAT. The detailed results
are provided in Appendix B.8.

Random Splits. Recently, (Shchur et al. 2018) pointed out
that the data split (train, validation, test) has a significant in-
fluence on the performance. Therefore, we further evaluated
average accuracy computed over 100 Random splits where
the splits are randomly drawn with 20 nodes per class for
train, 500 nodes for validation, and 1000 nodes for test. As
shown in Table 4, CAD-Net shows robust and superior per-
formance regardless of the data splits.

5 Conclusion
In this paper, we propose Adaptive aggregation with Class-
Attentive Diffusion (AdaCAD), a new aggregation scheme
for semi-supervised classification on graphs. The main ben-
efits of the proposed AdaCAD are three aspects. (i) Ada-
CAD attentively aggregates nodes probably of the same
class among K-hop neighbors employing a novel Class-
Attentive Diffusion (CAD). Unlike the existing diffusion
methods, both the node features and the graph structure are
leveraged in CAD with the design of the class-attentive tran-
sition matrix which utilizes the classifier. (ii) For each node,
AdaCAD adjusts the reflection ratio of the diffusion result
differently depending on the local class-context, which pre-
vents undesired mixing from inter-class neighbors. (iii) Ada-
CAD is computationally efficient and does not require ad-
ditional learning parameters since the class-attentive transi-
tion probability is defined by the classifier. The extensive
experimental results demonstrate the validity of AdaCAD
and Class-Attentive Diffusion Network, our simple model
based on AdaCAD, achieves state-of-the-art performances
by a large margin on seven benchmark datasets.

Acknowledgment
This research was supported by the IITP (Institute for In-
formation & Communication Technology Promotion) grant
funded by the MSIT (Ministry of Science and ICT, Ko-
rea): [2017-0-00306, Outdoor Surveillance Robots] and
[IITP-2020-2020-0-01789, ITRC(Information Technology
Research Center) support program].

Ethics Statement
Graphs accommodate many potential real-world applica-
tions such as social networks and web pages. Our research
is a study of neural networks applicable in the graph do-
main. Therefore, our research can be an important basis for
graph-based applications to be applied in real life in the fu-
ture. Besides, a large amount of cost is required to acquire
high quality of labeled data. The problem of semi-supervised
learning, which we focus on, can secure robust performance
with a small number of labeled data, thus contributing to
lowering the threshold of solving industrial or social prob-
lems using machine learning at a low cost.

References
Abu-El-Haija, S.; Perozzi, B.; Al-Rfou, R.; and Alemi, A. A.
2018. Watch your step: Learning node embeddings via
graph attention. In Advances in Neural Information Pro-
cessing Systems, 9180–9190.

Abu-El-Haija, S.; Perozzi, B.; Kapoor, A.; Harutyunyan, H.;
Alipourfard, N.; Lerman, K.; Steeg, G. V.; and Galstyan,
A. 2019. Mixhop: Higher-order graph convolution archi-
tectures via sparsified neighborhood mixing. arXiv preprint
arXiv:1905.00067 .

Akujuobi, U.; Yufei, H.; Zhang, Q.; and Zhang, X. 2019.
Collaborative graph walk for semi-supervised multi-label
node classification. In 2019 IEEE International Conference
on Data Mining (ICDM), 1–10. IEEE.

Akujuobi, U.; Zhang, Q.; Yufei, H.; and Zhang, X. 2020. Re-
current Attention Walk for Semi-supervised Classification.
In Proceedings of the 13th International Conference on Web
Search and Data Mining, 16–24.

Atwood, J.; and Towsley, D. 2016. Diffusion-convolutional
neural networks. In Advances in neural information process-
ing systems, 1993–2001.

Belkin, M.; Niyogi, P.; and Sindhwani, V. 2006. Manifold
regularization: A geometric framework for learning from la-
beled and unlabeled examples. Journal of machine learning
research 7(Nov): 2399–2434.

Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y. 2013.
Spectral networks and locally connected networks on
graphs. arXiv preprint arXiv:1312.6203 .

Chapelle, O.; Scholkopf, B.; and Zien, A. 2006. Semi-
supervised learning. Cambridge, USA: MIT Press.

Chen, D.; Lin, Y.; Li, W.; Li, P.; Zhou, J.; and Sun, X. 2019.
Measuring and Relieving the Over-smoothing Problem for
Graph Neural Networks from the Topological View. arXiv
preprint arXiv:1909.03211 .

Chen, M.; Wei, Z.; Huang, Z.; Ding, B.; and Li, Y. 2020.
Simple and deep graph convolutional networks. In In-
ternational Conference on Machine Learning, 1725–1735.
PMLR.

Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In Advances in neural information pro-
cessing systems, 3844–3852.

Gao, H.; and Ji, S. 2019. Graph u-nets. arXiv preprint
arXiv:1905.05178 .

Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, 1263–1272. JMLR.
org.

Grover, A.; and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery
and data mining, 855–864.

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In Advances in neu-
ral information processing systems, 1024–1034.

Hassani, K.; and Khasahmadi, A. H. 2020. Contrastive
Multi-View Representation Learning on Graphs. arXiv
preprint arXiv:2006.05582 .

Henaff, M.; Bruna, J.; and LeCun, Y. 2015. Deep convo-
lutional networks on graph-structured data. arXiv preprint
arXiv:1506.05163 .

Jiang, B.; Lin, D.; Tang, J.; and Luo, B. 2019. Data Rep-
resentation and Learning With Graph Diffusion-Embedding
Networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 10414–10423.

Khan, A.; Ye, Y.; and Chen, L. 2018. On Uncertain Graphs.
Synthesis Lectures on Data Management 10(1): 1–94.

Kingma, D.; and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980 .

Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907 .

Klicpera, J.; Bojchevski, A.; and Günnemann, S. 2018. Pre-
dict then propagate: Graph neural networks meet personal-
ized pagerank. arXiv preprint arXiv:1810.05997 .

Klicpera, J.; Weißenberger, S.; and Günnemann, S. 2019.
Diffusion Improves Graph Learning. In Advances in Neu-
ral Information Processing Systems, 13333–13345.

Kondor, R. I.; and Lafferty, J. 2002. Diffusion kernels on
graphs and other discrete structures. In ICML.

Lee, J.; Lee, I.; and Kang, J. 2019. Self-attention graph pool-
ing. arXiv preprint arXiv:1904.08082 .

Lee, J. B.; Rossi, R.; and Kong, X. 2018. Graph classi-
fication using structural attention. In Proceedings of the
24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, 1666–1674.

Li, Q.; Han, Z.; and Wu, X.-M. 2018. Deeper insights into
graph convolutional networks for semi-supervised learning.
In Thirty-Second AAAI Conference on Artificial Intelligence.

Liu, M.; Gao, H.; and Ji, S. 2020. Towards deeper graph
neural networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data
Mining, 338–348.

Lovász, L.; et al. 1993. Random walks on graphs: A survey.
Combinatorics, Paul erdos is eighty 2(1): 1–46.

Ma, Z.; Li, M.; and Wang, Y. 2019. PAN: Path integral based
convolution for deep graph neural networks. arXiv preprint
arXiv:1904.10996 .

Masuda, N.; Porter, M. A.; and Lambiotte, R. 2017. Random
walks and diffusion on networks. Physics reports 716: 1–58.

Monti, F.; Boscaini, D.; Masci, J.; Rodola, E.; Svoboda, J.;
and Bronstein, M. M. 2017. Geometric deep learning on
graphs and manifolds using mixture model cnns. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 5115–5124.

Niepert, M.; Ahmed, M.; and Kutzkov, K. 2016. Learning
convolutional neural networks for graphs. In International
conference on machine learning, 2014–2023.

Page, L.; Brin, S.; Motwani, R.; and Winograd, T. 1999. The
pagerank citation ranking: Bringing order to the web. Tech-
nical report, Stanford InfoLab.

Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In Proceedings of
the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 701–710.

Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-net: Con-
volutional networks for biomedical image segmentation. In
International Conference on Medical image computing and
computer-assisted intervention, 234–241. Springer.

Shchur, O.; Mumme, M.; Bojchevski, A.; and Günnemann,
S. 2018. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868 .

Thekumparampil, K. K.; Wang, C.; Oh, S.; and Li, L.-
J. 2018. Attention-based graph neural network for semi-
supervised learning. arXiv preprint arXiv:1803.03735 .

Tsitsulin, A.; Mottin, D.; Karras, P.; and Müller, E. 2018.
Verse: Versatile graph embeddings from similarity mea-
sures. In Proceedings of the 2018 World Wide Web Con-
ference, 539–548.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In Advances in neural information
processing systems, 5998–6008.

Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2017. Graph attention networks. arXiv
preprint arXiv:1710.10903 .

Wu, F.; Zhang, T.; Souza Jr, A. H. d.; Fifty, C.; Yu, T.; and
Weinberger, K. Q. 2019. Simplifying graph convolutional
networks. arXiv preprint arXiv:1902.07153 .

Wu, X.-M.; Li, Z.; and Chang, S.-F. 2013. Analyzing the
harmonic structure in graph-based learning. In Advances in
Neural Information Processing Systems, 3129–3137.
Wu, X.-M.; Li, Z.; So, A. M.; Wright, J.; and Chang, S.-F.
2012. Learning with partially absorbing random walks. In
Advances in neural information processing systems, 3077–
3085.
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Philip,
S. Y. 2020. A comprehensive survey on graph neural net-
works. IEEE Transactions on Neural Networks and Learn-
ing Systems .
Xu, B.; Shen, H.; Cao, Q.; Cen, K.; and Cheng, X. 2019.
Graph convolutional networks using heat kernel for semi-
supervised learning. In Proceedings of the 28th Interna-
tional Joint Conference on Artificial Intelligence, 1928–
1934. AAAI Press.
Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.-
i.; and Jegelka, S. 2018. Representation learning on
graphs with jumping knowledge networks. arXiv preprint
arXiv:1806.03536 .
Yang, Z.; Cohen, W. W.; and Salakhutdinov, R. 2016. Re-
visiting semi-supervised learning with graph embeddings.
arXiv preprint arXiv:1603.08861 .
Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton,
W. L.; and Leskovec, J. 2018. Graph convolutional neural
networks for web-scale recommender systems. In Proceed-
ings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 974–983.
Zhang, J.; Shi, X.; Xie, J.; Ma, H.; King, I.; and Yeung,
D.-Y. 2018. Gaan: Gated attention networks for learn-
ing on large and spatiotemporal graphs. arXiv preprint
arXiv:1803.07294 .
Zhang, K.; Zhu, Y.; Wang, J.; and Zhang, J. 2020. Adap-
tive structural fingerprints for graph attention networks. In
International Conference on Learning Representations.
Zhang, Z.; Cui, P.; and Zhu, W. 2020. Deep learning on
graphs: A survey. IEEE Transactions on Knowledge and
Data Engineering .
Zhou, D.; Bousquet, O.; Lal, T. N.; Weston, J.; and
Schölkopf, B. 2004. Learning with local and global con-
sistency. In Advances in neural information processing sys-
tems, 321–328.
Zhou, J.; Cui, G.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li,
C.; and Sun, M. 2018. Graph neural networks: A review of
methods and applications. arXiv preprint arXiv:1812.08434
.
Zhu, H.; Feng, F.; He, X.; Wang, X.; Li, Y.; Zheng, K.; and
Zhang, Y. 2020. Bilinear graph neural network with neigh-
bor interactions. In Proceedings of the Twenty-Ninth Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
volume 5.
Zhu, X.; Ghahramani, Z.; and Lafferty, J. D. 2003. Semi-
supervised learning using gaussian fields and harmonic
functions. In Proceedings of the 20th International confer-
ence on Machine learning (ICML-03), 912–919.

