Protocol for an observation and implementation study investigating optimisation of the management of stroke and transient ischaemic attack (TIA)

Sheppard, James; Mellor, Ruth; Bailey, Sheila Marie; Barton, Pelham; Boyal, Amunpreet; Greenfield, Sheila; Jowett, Sue; Mant, Jonathan; Quinn, Tom; Singh, Satinder; McManus, Richard; BBC CLAHRC Investigators

DOI: 10.1136/bmjopen-2012-001430

License: Creative Commons: Attribution-NonCommercial (CC BY-NC)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 26. Dec. 2018
Protocol for an observation and implementation study investigating optimisation of the management of stroke and transient ischaemic attack (TIA)

James Peter Sheppard,1 Ruth Mary Mellor,1 Sheila Marie Bailey,1 Pelham Barton,2 Amunpreet Boyal,1 Sheila Greenfield,1 Sue Jowett,2 Jonathan Mant,3 Tom Quinn,4 Satinder Singh,1 Richard J McManus,5 on behalf of the BBC CLAHRC Investigators*

ABSTRACT

Introduction: Patients benefit from early and intensive treatment in both acute ischaemic stroke and transient ischaemic attack. Recent audits of acute stroke/transient ischaemic attack care suggest that although standards have improved, current services still fall short of optimal care. The aim of this study is to establish a database of patients accessing stroke services. Data will be collected and analysed to provide individualised feedback to healthcare professionals who can then use these findings to develop strategies for service improvement.

Methods and analysis: This longitudinal observational study will evolve with the ongoing findings from the research output. The project will consist of three phases: assessment of current practice, feedback of findings and evaluation of service change. Consecutive patients will be recruited from participating hospitals, and identifiable data will be collected to link records from the Primary Care, Secondary Care and Emergency Services. As this study focuses on observation of current practice, a sample size calculation is not deemed appropriate. Patients will be sent follow-up questionnaires examining quality of life at 3 and 12 months post-event. Qualitative interviews will examine the care pathway through the experiences of patients, their carers, healthcare personnel and commissioners. Collected data will be used in economic analyses, which will evaluate the impact of current care and service redesign on the NHS costs and patient outcomes (death and quality of life).

Ethics and dissemination: Ethical approval for this study has been obtained from the National Research Ethics Committee (reference; 09/H0716/71), and site-specific R&D approval has been acquired from the relevant NHS trusts. All findings will be presented at relevant healthcare/academic conferences and written up for publication in peer-reviewed journals. Results will be fed back to patients and participating trusts through a series of reports and presentations. These will be used to facilitate discussions about service redesign and implementation.

BACKGROUND

Stroke is one of the leading causes of morbidity and mortality worldwide, with an estimated 5.7 million deaths and 50 million disability-adjusted life-years lost every year.1 To this end, stroke-related mortality is expected to rise by 37% in the next 20 years.1 Effective diagnosis and management of stroke and transient ischaemic attack (TIA) is therefore of importance.

It is now well recognised that people who have a stroke or TIA benefit from early
intensive treatment: in acute ischaemic stroke, thrombolysis within 3 h of symptom onset results in improved outcomes \(^2\) and has thus been recommended by the National Institute for Health and Clinical Excellence. \(^3\) Indeed, this has now been extended to 4.5 h following observational data suggesting benefit from thrombolysis past the original time window. \(^4\) Similarly, people having a TIA are at high risk of having a subsequent stroke; these risks are highest in the first few days following the event. \(^5\) There are several interventions, both medical and surgical, that can substantially reduce this risk of stroke following a TIA, and evidence that earlier intervention is better. \(^6\)

To ensure that patients with stroke and TIA receive diagnosis and treatment quickly, national guidelines recommend that services be designed to include a combination of emergency referral, early brain imaging and thrombolysis in acute stroke and immediate referral for urgent specialist assessment and investigation in TIA. \(^6\) \(^7\) The National Sentinel Stroke Audit reveals that although standards have improved, current care still falls short of these aspirations: in 2010, only 5% of patients received thrombolysis for acute stroke. \(^8\) For TIA services, care has improved with specialist review following TIA occurring within 7 days in 97% of high-risk patients and 86% of low-risk patients. \(^9\) However, this still falls short of the 100% specified in clinical guidelines.

The National Sentinel Stroke Audit \(^8\) is a useful tool for assessing current hospital stroke services across the country. However, this includes a small proportion of the total patients and cannot assess the whole care pathway for patients with acute stroke and TIA. Pre- and post-event management in Primary Care and via Emergency Services may have a significant impact on stroke and other cardiovascular events \(^10\) hence effective prehospital care is vital in achieving the standards set out in the National Stroke Strategy. \(^7\) Currently, it is not clear to what extent the interaction between services impacts patient care and outcomes.

The aim of this project is to identify barriers to effective treatments and model the impact of service change on patient outcomes and NHS costs using data collected from the Primary Care, Secondary Care and Emergency Services. In addition, qualitative interviews and focus groups will establish the view of patients, their carers, healthcare personnel and commissioners towards current stroke and TIA care.

This work is part of the National Institute for Health Research, Collaborations for Leadership in Applied Health Research and Care (CLAHRC) programme. The main remit of this funding stream is to close the current gap between research and clinical practice. \(^11\) \(^12\) As a result, a unique aspect of this project will be to combine research findings with routinely collected data in economic models and provide feedback to healthcare professionals and commissioners, working with them to develop strategies for change. This project will result in more detailed information on stroke and TIA services than ever before along with specific plans for service development underpinned by reliable cost-effectiveness data. Evaluation will assess the gap between research and clinical practice and provide a model for future research into service improvement in the NHS.

METHODS

Study aims/research questions

The overriding aim of this study is to optimise the acute management of people with stroke and TIA in Birmingham through identification and breaking down of current barriers to timely and effective treatment. The project involves an iterative process beginning with observation of current practice. From this initial observation, the following research questions have been formulated:

1. How do stroke and TIA patients get to hospital and why do they choose these routes?
2. To what extent does prehospital and hyperacute hospital care impact the timeliness of subsequent treatment, especially thrombolysis?
3. Are risk factors for cardiovascular disease correctly measured and managed in Primary Care before and after stroke or TIA?
4. What impact would service redesign to increase the proportion of acute stroke patients receiving thrombolysis have on the cost-effectiveness of care and patient outcomes in terms of strokes averted and quality-adjusted life-years?
5. What are the queuing effects caused by intermittent TIA clinics and what impact would a move to clinic slots, 7 days a week, have on patient outcomes and cost-effectiveness?
6. What do patients (and their carers) see as positive or negative aspects of the acute stroke patient pathway?
7. How do patient perspectives differ from those of the healthcare personnel working in the stroke pathway?

These research questions will be answered using a mixed-methods approach, bringing together quantitative, qualitative and economic analyses. A major goal of the work is to integrate with the healthcare service in which the research is conducted, building lasting relationships that reduce the existing gaps between research and implementation. \(^11\) \(^12\) Using this model will enable further research questions to be generated in conjunction with the healthcare providers, ensuring that they are timely and relevant.

Study design

This is a longitudinal observational study of stroke and TIA management throughout the care pathway. The study will employ the Plan-Do-Study-Act cycles of implementation and evaluation. \(^13\) This model is commonly used in quality improvement projects \(^14\) \(^15\) \(^16\) and will be adapted for this project into three phases: assessment of current practice (recruitment of study participants and data collection), feedback (reporting of research
findings directly to service providers) and evaluation (of ongoing service change through further recruitment and data collection) (figure 1). Recruitment and collection of data relating to stroke and TIA services, respectively, will be staggered to ensure resources are used effectively.

Ethical considerations

Although this study primarily involves service evaluation, ethical approval is required to allow collection of patient identifiers and sending out of quality-of-life questionnaires. Therefore, full ethical approval has been obtained from the National Research Ethics Service Committee, London—Queen Square (reference: 09/H0716/71) and site-specific R&D approval has been acquired from the relevant NHS trusts. In addition, participating trusts have given approval for anonymised data from clinical audits to be used within the quantitative analyses in this project.

Study population/recruitment procedure

The study will take place within two hospital trusts (University Hospitals Birmingham NHS Foundation Trust and Heart of England NHS Foundation Trust) and the surrounding Primary Care Trusts (South Birmingham, Birmingham East and North, Solihull, Sandwell, Dudley, Heart of Birmingham Teaching, Warwickshire, Worcestershire). Additional data relating to patients who travelled to hospital via ambulance will be collected from the West Midlands Ambulance Service NHS Trust (figure 2).

Patients will be recruited from stroke wards and TIA clinics in participating hospital trusts. Eligible patients will be those thought to be having a stroke or TIA who present to a collaborating hospital trust and are under the care of a participating stroke consultant during the data collection period (figure 2). Only patients unwilling or unable to give informed consent (and where no consultee is available) will be excluded. Informed consent will be gained from all patients to allow collection of patient identifiers and completion of quality-of-life questionnaires. Where an individual is unable to provide informed consent due to lack of capacity, assent from an appropriate consultee will be sought.

Patients eligible for the qualitative component of the project will be selected from those recruited to the main study. Purposive sampling will be used in recruitment to ensure that a range of patient experiences is captured. Patients will be given the option of having their carer, friend or family member attend the interview with them and they can refer to them in order to help fill in the gaps in their accounts. All parties attending interviews will provide written informed consent.

Figure 1 Project timeline detailing phases and related activity throughout the project.

Figure 2 Flow diagram of patient recruitment and data collection during the study. MRIS, Medical Research Information Service; TIA, transient ischaemic attack.

Patients eligible for the qualitative component of the project will be selected from those recruited to the main study. Purposive sampling will be used in recruitment to ensure that a range of patient experiences is captured. Patients will be given the option of having their carer, friend or family member attend the interview with them and they can refer to them in order to help fill in the gaps in their accounts. All parties attending interviews will provide written informed consent.
Healthcare personnel and commissioners will be interviewed, either on their own or in a focus group. Purposive sampling will be used to ensure recruitment of personnel across the care pathway, with study stakeholders acting as gatekeepers to recruit initial participants.

Sample size
No formal sample size calculation has been taken for this project. The nature of this study is that it is one of observation of current practice, and therefore, a sample size calculation was not deemed appropriate. However, based on validated data from both hospital trusts (2010–2011), approximately 400 patients with stroke and 350 patients with TIA attended each hospital each year. Based on our model of two 1-year data collection periods (the first being assessment of current practice and the second being an evaluation of practice change) (figure 1) and assuming around 75% recruitment of eligible patients, approximately 600 patients with stroke and 525 patients with TIA will be included per data collection period.

Within the qualitative component, interviews will be conducted with approximately 30 patients (some of whom will be accompanied by their carers). When 10 and 20 patients have been interviewed, a further theoretical sample will be sought, guided by the emerging data analysis in order to extend and challenge earlier data and interpretation and to test the integrity and credibility of the developing analysis. The proposed number of interviews will enable saturation of themes. Healthcare professionals and commissioners will be selected in a similar vein, with up to 30 per stakeholder group.

Data collection
Data related to the patient’s present hospital admission/clinic appointment and preceding stroke/TIA event will be collected retrospectively from hospital medical records (table 1). Patient identifiers will be collected to allow identification of patient records in other participating NHS trusts.

General practitioner surgeries from the participating Primary Care Trusts will be invited to participate in the

Table 1 Quantitative data collected from each healthcare setting

<table>
<thead>
<tr>
<th>Healthcare setting</th>
<th>Time period*</th>
<th>Data collected</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Care</td>
<td>Pre- and post-stroke/TIA event</td>
<td>Measurement of cardiovascular risk factors</td>
<td>Blood pressure, cholesterol, smoking status, absolute cardiovascular risk score</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Management of cardiovascular risk factors</td>
<td>Antihypertensive and statin prescriptions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dates and times</td>
<td>Relating to GP consultations, cardiovascular risk factor measurements, prescriptions</td>
</tr>
<tr>
<td>Secondary Care</td>
<td>During stroke/TIA event</td>
<td>Patient identifiers</td>
<td>NHS number, patient name, date of birth and patient address</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Route to hospital</td>
<td>Emergency ambulance, general practitioner referral, self referral to the emergency department</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inhospital investigations</td>
<td>CT scan, blood pressure, cholesterol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Treatment given</td>
<td>Thrombolyis, carotid endarterectomy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dates and times</td>
<td>Relating to onset of symptoms, arrival in hospital, CT scan, first contact with medical/health professionals, admission to hospital, discharge from hospital, follow-up clinic appointment</td>
</tr>
<tr>
<td>Emergency Services</td>
<td>Pre-stroke/TIA event</td>
<td>Discharge medication</td>
<td>Antihypertensive and statin prescriptions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final diagnosis</td>
<td>Stroke, TIA, stroke mimic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Presenting complaint</td>
<td>Suspected stroke, TIA, left-sided weakness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Patient symptoms</td>
<td>Arm weakness, speech impediment, dizziness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emergency service investigations</td>
<td>Face Arm Speech Test, blood pressure, heart rate, Glasgow Coma Score</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medications administered</td>
<td>Saline solution (NaCl)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dates and times</td>
<td>Relating to onset of symptoms, ambulance dispatch, arrival at patient, departure for hospital, arrival in the emergency department and handover of patient care</td>
</tr>
<tr>
<td>Medical Research Information Service</td>
<td>Post-stroke/TIA event</td>
<td>Date and time</td>
<td>Of death</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cause of death</td>
<td>As stated on death certificate</td>
</tr>
</tbody>
</table>

*Time period (in relation to the patient’s stroke/TIA event) from which data were collected.

GP, General Practitioner; TIA, transient ischaemic attack.
study, and data will be collected regarding Primary Care consultations, including primary and secondary prevention and outcome (table 1).

For those patients who travel to hospital via the Emergency Services, data will be extracted from the West Midlands Ambulance Service NHS Trust records. Relevant patient data will be identified using ambulance case and station numbers, extracted from hospital records. Data collected will include details of presenting complaints, patient symptoms, investigations conducted (eg, Face Arm Speech Test) and medications given (table 1). Timings from ambulance dispatch to arrival at hospital and handover will be acquired from the ambulance computer-aided dispatch system.

Additional anonymised data will be collected from all participating hospital trusts. These data will include demographics for all validated stroke admissions during each data collection period. This will be used to define the proportion of eligible patients successfully recruited to the study and whether these patients are representative of the general stroke population. Additional data regarding all scheduled TIA follow-up clinics will also be collected from both hospital sites for use in economic analyses.

Data from each NHS trust will be securely transferred into a bespoke web enabled SQL server database (Microsoft Corporation, Redmond, Washington, USA) stored securely at the host institution (University of Birmingham).

Qualitative data will be collected via in-depth interview or focus group. In-depth interviews will be used as they offer the most appropriate way to elicit people’s beliefs and experiences. Focus groups provide an opportunity for interaction between participants, allowing them to reflect on their own and others perspectives. Flexibility in data collection is required to enable as broad a range of people to participate as possible, for example, focus groups are more appropriate in some of the healthcare environments.

Interviews and focus groups will follow a topic guide, developed iteratively as the study progresses. Data will be collected from patients (and their carers) about their stroke and TIA experience and their treatment and care in relation to this. Healthcare personnel and commissioners will be asked about the stroke and TIA patient pathways, in particular, areas they think are good or that could be improved.

Following interviews and focus groups, the interviewer will write field notes, noting the context and ‘feel’ of the interview (eg, if there were any points at which the participant was uncomfortable). Non-verbal communication will also be recorded in this. These field notes will be used in conjunction with interview transcripts during data analysis.

Follow-up
Postal questionnaires will be sent to all recruited patients (who are still alive) at 3 and 12 months after the initial stroke/TIA event. These questionnaires will contain health status assessments, including the Modified Rankin Score, EQ-5D and the Stroke Impact Scale. Patients’ vital status will be checked using the NHS Personal Demographics Service, 1 week prior to sending the questionnaire.

Details of all recruited patients will be sent to the Medical Research Information Service at the NHS Information Centre (Leeds, England). They will provide quarterly follow-up data on all-cause mortality for all patients in the study (table 1).

DATA ANALYSIS AND DISSEMINATION
Epidemiological study
Quantitative data from all trusts will be collated and analysed to assess existing barriers to effective treatment for stroke and TIA. Previous literature assessing barriers to effective acute stroke care have focused primarily on public awareness and hospital care. The main focus of our analyses will be to use linked data from each patient to assess the impact of care across the clinical pathway (hence across clinical organisations), something that is not currently possible with routine clinical audits in the UK. Descriptive statistics will be used to define current practice, and logistic regression analyses will evaluate associations between identified barriers to care and other influencing factors.

Epidemiological findings will be used to inform proposed strategies for change in the economic analyses of the stroke and TIA care pathway. In addition, trust-specific findings will be reported back to relevant parties through a series of tailored reports and presentations. This dissemination will offer a unique opportunity to feedback findings between trusts and facilitate joined-up service provision.

Economic modelling study
In acute stroke, previous economic analyses have assessed the effects of thrombolysis against ‘conservative treatment’ (no thrombolysis). In the present study, we intend to compare current care (including thrombolysis) with ‘change strategies’ designed to increase thrombolysis rates. Following the feedback phase of the project (figure 1), we will use the same modelling approach to examine whether ongoing service change has been effective.

Through work previously commissioned by the West Midlands Strategic Health Authority, a mathematical model has been developed that compares current practice with service redesign. This decision tree model maps out the acute stroke care pathway, using a series of probabilities (derived from epidemiological data collected), which predicts the likelihood a patient will access a specific service or be given a type of treatment. The model will be used to evaluate the impact of treatment decisions on NHS costs and patient outcomes (death and quality of life). These costs will be derived from a combination of standard unit costs, NHS reference costs and previously published literature.
Health status data will be collected directly from patients using 3- and 12-month follow-up questionnaires and supplemented with published data.\footnote{Supplemented with published data.}

Our group has also previously developed a mathematical model, which aims to determine the optimum pattern of service provision for people presenting with a TIA or minor stroke.\footnote{This discrete event simulation model examines the workload and cost implications of various methods of organising care. In the present study, the model will be used to track individuals who are occasionally competing for resources in a realistic representation of calendar time (the availability of these resources depends on time of day and day of week). This will allow estimation of the impact of redesigning TIA services on NHS costs and patient outcomes. Once again, the model will be based on real-life data collected from recruited patients and anonymised data from the hospital trusts.}

Economic modelling is relevant in this situation as it allows comparison of different patterns of service provision in a systematic fashion where trial comparison would be impracticable. The findings of these studies will be fed back to participating trusts through reports and presentations. Specifically, service commissioners will be engaged, and these data will be central to future commissioning of stroke services across the participating Trusts.

Qualitative study

Qualitative methodologies offer the most appropriate way to elicit people’s beliefs, knowledge and the meanings they ascribe to their experiences.\footnote{In this study, these methodologies will be used to examine what barriers to service delivery, implementation and use, patients and healthcare professionals experience along the stroke and TIA care pathway.} Coding processes, including creating OSOPs,\footnote{Coding processes, including creating OSOPs, will identify emerging key categories and concepts from the participant data. These will be compared across interviews and time of data collection in order to capture the process of change. Concepts identified will further be compared against established concepts in the literature and will be integrated into themes providing a structure for presentation of findings. Researchers from a number of disciplines (sociology, public health, nursing and primary care) will be involved in the analysis, allowing for a range of insights to be gained.}\footnote{Other steps to ensure rigour will include: having two (or more) researchers independently code initial transcripts and then compare findings to formulate an initial coding frame.} Findings will be fed back to participating trusts in conjunction with epidemiological and economic modelling feedback. This qualitative element of the project will offer a unique insight to the overall study findings and facilitate service redesign, which is better tailored to patient and practitioner needs.

CONCLUSIONS

The CLAHR C Optimisation of the Management of Stroke and TIA project will build on previous work by describing current practice in stroke and TIA care,\footnote{The CLAHR C Optimisation of the Management of Stroke and TIA project will build on previous work by describing current practice in stroke and TIA care.} and examine the potential effects of implementation of the National Stroke Strategy.\footnote{By working together with multiple healthcare trusts, this study aims to improve patient care right across the stroke and TIA care pathway. Using a generalisable model, data collection, analysis, feedback and evaluation will be carried out within the life of this project. This model of research, feedback and evaluation will be assessed for its potential to set the foundations for how healthcare services are routinely examined and optimised in the future.}

Author affiliations

\begin{itemize}
 \item Department of Primary Care Clinical Sciences, University of Birmingham, Birmingham, UK
 \item Health Economics Unit, University of Birmingham, Birmingham, UK
 \item Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
 \item Faculty of Health and Medical Sciences, School of Health and Social Care, University of Surrey, Guildford, UK
 \item Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
\end{itemize}

Contributors

RJMcM, JM, SJ and PB had the original idea, gained the funding and wrote the first draft with JPS and RMM. All authors subsequently refined the manuscript and approved the final version. RJMcM is the guarantor.

Funding

The research was funded by and took place at the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care based in Birmingham and Black Country. RJMcM holds an NIHR Career Development Fellowship. The views and opinions expressed are those of the authors and do not necessarily reflect those of the NHS, NIHR or the Department of Health. The funders had no involvement in the study design, data collection, management of the project, data analysis, interpretation of data, writing of the article or the decision to submit the article for publication. The corresponding author (RJMcM) has ultimate authority over each of these activities.

Competing interests

None.

Ethics approval

Approval for this project has been obtained from the National Research Ethics Service Committee, London—Queen Square (reference: 09/H0716/71).

Provenance and peer review

Not commissioned; internally peer reviewed.

REFERENCES

Optimisation of the management of stroke and transient ischaemic attack

Protocol for an observation and implementation study investigating optimisation of the management of stroke and transient ischaemic attack (TIA)

James Peter Sheppard, Ruth Mary Mellor, Sheila Marie Bailey, et al.

BMJ Open 2012 2:
doi: 10.1136/bmjopen-2012-001430

Updated information and services can be found at:
http://bmjopen.bmj.com/content/2/3/e001430.full.html

These include:

References
This article cites 22 articles, 14 of which can be accessed free at:
http://bmjopen.bmj.com/content/2/3/e001430.full.html#ref-list-1

Open Access
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See:
http://creativecommons.org/licenses/by-nc/2.0/ and
http://creativecommons.org/licenses/by-nc/2.0/legalcode.

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Cardiovascular medicine (71 articles)
- Emergency medicine (14 articles)
- Epidemiology (197 articles)
- Health economics (24 articles)
- Health services research (127 articles)
- Qualitative research (49 articles)

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/