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The benefits of different levels of engagement with test, trace and isolate
procedures are investigated for a pandemic in which there is little population
immunity, in terms of productivity and public health. Simple mathematical
modelling is used in the context of a single, relatively closed workplace such
as a factory or back-office where, in normal operation, each worker has
lengthy interactions with a fixed set of colleagues. A discrete-time SEIR
model on a fixed interaction graph is simulated with parameters that
are motivated by the recent COVID-19 pandemic in the UK during a post-
peak phase, including a small risk of viral infection from outside the
working environment. Two kinds of worker are assumed, transparents
who regularly test, share their results with colleagues and isolate as soon
as a contact tests positive for the disease, and opaques who do none of
these. Moreover, the simulations are constructed as a ‘playable model’ in
which the transparency level, disease parameters and mean interaction
degree can be varied by the user. The model is also analysed in the conti-
nuum limit. All simulations point to the double benefit of transparency in
both maximizing productivity and minimizing overall infection rates.
Based on these findings, public policy implications are discussed for
how to incentivise this mutually beneficial behaviour in different kinds of
workplace, and simple recommendations are made.
1. Introduction
This study is inspired by the situation in the UK in the latter half of 2020 as the
nation has been attempting to restart the economy in the aftermath of the first
COVID-19 virus infection peak. The general structure of our mathematical
model and the parameter values chosen are specific to that case study. The
results are nevertheless intended to be applicable to more general situations
in any modern society where there is a residual risk of infection from a virus
or other pathogen with insufficient natural immunity in the general population.

There has been much recent evidence to suggest that the most effective con-
tainment measure in a human epidemic with relatively small proportions of
infectious individuals is that of rapid testing, contact tracing and isolation of
those in the contact group [1,2]. The effectiveness of such a strategy is thought
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to be a function of the basic reproduction number of the infec-
tion, known as the R-value; this gives, on average, the
number of new infections that each infection generates. How-
ever, R itself is a crude measure, as its instantaneous value
will be a function not just of the basic disease dynamics,
but of the behaviour of infectious individuals.

The seminal paper of Keeling & Eames [3] introduced
ideas from graph theory to epidemiology, where the nature
of interactions between infected and susceptible individuals
defines a dynamic contact network. Ideas from modern net-
work science, such as the degree distribution, can then be
used to estimate statistical properties of the infection, such
as the R-number, and to evaluate the effectiveness of different
potential treatment strategies; see [4] for a relatively recent
review of the state of the art.

The majority of studies that have looked at contact tracing
as an effective means of viral control have considered the
question at a general population level. We note the recently
published studies [1,2], which model the requirements of an
effective testing, tracing and isolation strategy to avoid a
second-wave of the COVID-19. One should not, however,
underestimate the required effort. For example, based on
data obtained in a unique collaboration with BBC, Kucharski
et al conclude ‘in a scenario where there were 1000 new symp-
tomatic cases that met the definition to trigger contact tracing
per day […] 15 000–40 000 contacts would be newly quaran-
tined each day. […] A high proportion of cases would need
to self-isolate and a high proportion of their contacts to be
successfully traced to ensure an effective reproduction
number that is below one in the absence of other measures.’
This finding is even more stark when combined with results,
e.g. [5], that suggest that social isolation needs to happen suf-
ficiently quickly to be effective.

The most important features of any public health cam-
paign built around testing, contact tracing and isolation is
the degree of compliance in the general population, which
can vary with the method used [6]. Evidence presented to
Scientific Pandemic Influenza group on Behaviour (SPI-B)
as part of the advice offered to the UK Government Scientific
Advisory Group for Emergencies (SAGE) indicated a shortlist
of factors that might help to promote compliance with and,
adherence to, all behaviours that minimize transmission of
SARS-CoV-2 infection. These apply equally to compliance
with testing and contact tracing. Factors included messaging
that increased perceptions of risk, clear communications from
Government identifying what behaviours the public should
adopt, encouraging support from the community so creating
social norms for infection-limiting behaviours and impor-
tantly, actions making it as easy as possible for people
testing positive to isolate [7–9]. Recent studies have indicated,
however, that other factors may undermine compliance with
contact tracing. Perceived lack of data security and privacy,
together with lack of trust in government, were found to be
the main barriers to adoption [10]. Even in relatively compli-
ant populations, contact tracing may not be sufficient to
control the spread of the virus. For example, the study [11]
considered the effectiveness of two different methods of con-
tact tracing within a closed, and generally compliant
population, namely the participants at a scientific conference
on epidemic modelling. One approach was based on reported
contacts, as recorded in a log book, the other based on the use
of unobtrusive wearable proximity sensors. While both
methods were highly tolerated, it was found that neither on
its own was able to give a full picture of meaningful contacts
that might have caused an infection to spread. It is clear that
other methods are needed to control the spread of the virus in
addition to contact tracing.

The question addressed in this paper is more modest. We
imagine a risk assessment is to be made within a specific
workplace on whether and how the workplace can be made
‘safe’ to reopen following lockdown. Here we use the term
safe to refer to the public health of the whole of society, to
avoid the workplace contributing to a resurgence of the
virus in the general population. Nevertheless, the employees,
who are the agents in our model, also benefit from safety, but
it is assumed that the individual mortality and morbidity
rates are sufficiently low that the pay-off to the individual
is small. In addition, stakeholders who benefit from the
output of workplace will want the workplace to be pro-
ductive as possible. Such stakeholders include general
actors who benefit from the upturn in economy, the owners
or shareholders of the business in question, and the workers
themselves in terms of security of employment.

Thus, it might seem that safety and productivity are
potentially conflicting aims. Given a small overall rate of
viral infection, an employer might seek to maximize the
workplace productivity by staying open, without isolation
of exposed workers. Such actions would clearly compromise
safety, and are thus negative to society as a whole. This might
be couched in terms of the classical Prisoner’s Dilemma pro-
blem within game theory. That is, if every workplace took
this attitude, then clearly resurgence within the general popu-
lation would be probable, whereas one or two isolated ‘bad
apple’ employers might be able to benefit by maximizing
their personal productivity, provided that others do not.

In fact this ‘bad apple’ principle has been analysed in the
context of epidemics by Enright & Kao [12], who ran an
agent-based simulation where there are precisely such conflict-
ing pay-offs. The specific motivation for their study was disease
among farm animals where the disincentive to the farmer of
complying with safety might be particularly harsh, such as
the slaughter of their entire herd. They found that a sharp
phase transition occurs from sub-critical R values to super-criti-
cal, for a relatively small amount of compliance. Their findings
are echoed by those of Eksin et al [13] in a stochastic network
simulation of epidemics. The latter also conclude that ‘a little
empathy goes a long way’, meaning that a focus on treating
and isolating those infected can be more advantageous than
an approach that seeks to protect the healthy. See also the
recent review [14] on the state of the art for game-theoretic
approaches to analysing agent behaviour within epidemics.

The present study was motivated by discussions during a
virtual study group workshop on Mathematical Principles for
Unlocking the Workplace at the end of April 2020, organized
by the VKEMS1 initiative between the Isaac Newton Institute
(Cambridge), the International Centre for Mathematical
Sciences (Edinburgh) and the UK’s Knowledge Transfer Net-
work. The participants were split into four teams to discuss
different natures of the person-to-person interactions that
happen in different working environments; brief versus
lengthy, and with a closed set of colleagues versus with an
open set of clients. This study arose from the group look at
working environments where interactions were lengthy but
with a closed set of colleagues.

The kind of workplaces we have in mind then, are those
where workers have a relatively static interaction network



S E A U Rat work:

at home: S E A U Q

never become symptomatic
transparent behaviour
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Figure 1. Sketch outlining the operation of the discrete-event model. Here, S is susceptible, E is exposed (not yet infectious), A is asymptomatic infectious, U is
unwell infectious, Q is quarantined and R is recovered (and immune). Lines/arrows give all possible transitions between states. See text for details.
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with other colleagues. Any interactions with other employees
or clients can be assumed to be socially distanced. An
example of such a working environment might be a back
office, which is split into teams that are physically co-located
with a number of middle managers and service personnel
who naturally migrate between several teams. Another
example might be a factory where individual job functions
are well demarcated and a typical worker would only need
to interact with a relatively small subset of other workers
as part of their normal duties. Thus we shall make the sim-
plifying assumption that the workplace can be represented
by a fixed interaction network, with each worker as a
node, connected by links that represent interactions between
workers who by the nature of their job function cannot
effectively socially distance from each other.

A recently published study [15] performs agent-based
simulations of the spread of the COVID-19 epidemic within
a closed ‘facility’ rather than an open population. We note
though that this work does not address the specific question
addressed here, namely the effect of having some proportion
of the population self-isolate, that is remove themselves from
the facility, in the case that they have been in contact with
someone who develops symptoms. Also, we do not consider
a completely closed facility. Each of our workers are assumed
to go about their daily business outside of the workplace with
some base level of infection rate each day.

In the present work, we presume a world in which rapid
testing, with near instantaneous results, is available to
anyone displaying symptoms. Moreover, we assume a routine
contact tracing system is in place which requires contacts of
those testing positive to self-isolate. We suppose that there is
nonetheless a risk of infection outside of the workplace. We
wish to explore the question of the effect within our chosen
workplace of measures designed to stop any incoming infec-
tion spreading to the entire workforce. In particular, we shall
look at the effect of the presence of a proportion of opaque
workers, who are not transparent about their infection-risk
status, and do not go home when made aware that one of
their colleagues has the virus. Such opacity may be interpreted
as a form of presenteeism, where workers continue to go to
work despite possible infection or symptoms. Is there an
incentive for the employers and employees alike to engage
fully in transparency? That is, is it valuable to engage with
test, trace and isolate procedures in order to halt virus
spread while also maximizing productivity?

The rest of the paper is outlined as follows. The sub-
sequent section introduces our mathematical model, its
underlying assumptions and the various parameters that
may be tuned to simulate different scenarios. Section 3 con-
tains simulation results under the two scenarios where the
underlying rate of infection in the general population is
either negligible or significant. We also conduct some
approximate mathematical analysis to help explain the
results. Section 4 contains discussion of the findings both
from a scientific perspective and from the point of view of
public policy interventions and workplace psychology.
Finally, §5 makes recommendations.

2. The mathematical model
We have developed a simple discrete-time simulation model
posed on a graph representation of an office environment. An
outline of the model is given in figure 1.

2.1. Underlying assumptions
The basic disease model we choose is a form of SEIR model.
That is, the usual extension to the Kermack–McKendrick
model that allows for four states; (S)usceptable, (E)xposed
(infected but not yet infectious), (I)nfectious and (R)ecovered
(with immunity from re-infection). In line with what is
known about COVID-19, in fact, we choose a modified var-
iant in which there are two infectious states; A for
(A)symptomatic infectious individuals and U for infectious
symptomatic, or (U)nwell. We suppose that susceptible indi-
viduals can become exposed in one of two ways, either
through a (small) probability of exposure to the virus present
in the general population, or with a much larger probability if
one or more of their connected co-workers is infectious. For
simplicity, we shall suppose that the rate of exposure outside
of the workspace is constant, irrespective of each worker’s
personal circumstances. For the purposes of the simulation,
it will also be useful to consider a sixth disease state, (Q)uar-
antined, to represent those who are obliged to be in
quarantine post infection. Note that the Q state is only a
small subset of those who are isolating at home (figure 1),
which also includes other disease states.
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Thus we can represent the disease dynamics as

S ! E ! A ! U ! Q ! R,

with the possibility for remaining in each state for periods of
time and the possibility of skipping certain stages altogether
(for example, A may transition straight to Q or to R without
going through U). The full set of possible transitions are illus-
trated by the arrows in figure 1. The specific disease
parameters and logical rules that determine the transitions
between these disease states are presented in §2.2.

For convenience, we choose a discrete-time version of the
model, in which the fundamental unit of time is the working
day. To correct the model for the effect of weekends or other
regular workplace closure days, we could in principle
exclude such days from our simulation and choose α to be
a given function of time, which would be larger after a clo-
sure day, and adjust the time intervals tE,A,U,Q accordingly.

The fundamental model is a dynamic network with N
nodes, in which nodes are workers and the state at node i
is a 3-tuple:

Xi ¼ (xi, pi, oi);

xi [ {S, E, A, U, Q, R},

pi [ {0, 1},

oi [ {0, 1}:

Hence, xi gives the disease state; pi is a binary variable that
measures whether the worker is present in the workplace
(pi = 1) or is self-isolating at home (pi = 0); oi is a binary variable
that determines the opacity of the worker, namely whether they
consistently engage in test, trace and isolate and share their data
openly (oi = 0), or not (oi = 1). The workplace contact network of
interactions is given by an adjacency matrix

A ¼ {aij}; aij [ {0, 1},

such that i, j are in contact iff pip jaij ¼ 1:

Note therefore that while we assume Aij is fixed in time, the
actual workplace contact network varies according to whether
workers are at home or not. It is useful therefore to define a cur-
rent workplace contact matrix C and the set of workplace contacts
Wi for each node i:

C ¼ {cij} ¼ {pip jaij} Wi ¼ {j : Cij ¼ 1}:

It is also helpful to define indicator functions fi and gi to deter-
mine respectively whether one of node i’s contacts is
infectious, or whether one is reporting symptoms

fi ¼ 1 if 9j [ Wi such that x j [ {A, U},

0 otherwise

(

and

gi ¼ 1 if 9j [ Wi such that o j ¼ 0 and x j ¼ U,

0 otherwise:

(

The opacity variable oi determines an individual worker’s
behaviour if they become symptomatic or if one of their contacts
tests positive for the disease.
2.2. Time increment
The key to the model is the time update step, which deter-
mines how each worker transitions between disease states.
We first delineate all the update rules for transparent
workers, before explaining only what is different in the case
of an opaque worker.

The behaviour of transparent workers: assume oi = 0, and con-
sider the possible transitions taking place in one time step to
worker i.

(i) Infection: If worker i is in work and susceptible, such
that pi = 1 and xi = S, then the probability of infection
(transition to disease state E) in the next time step is
α + βfi. Otherwise xi remains as S.

(ii) Isolation because of contact: In addition, if worker i is
in work, and a transparent work contact is unwell, such
that pi = 1 and gi = 1, then pi → 0 in the next time step.
That is, worker i goes home, irrespective of their own
disease state xi in the present time instant or the next.

(iii) Exposure: If worker i is exposed, such that xi = E, then xi

remains in this state for a total number of contiguous
days equal to tE, before transitioning to disease state
A, as i becomes infectious but asymptomatic.

(iv) Asymptomatic infectiousness: If i is asymptomatic,
such that xi = A, then xi remains in this state for a
total number of contiguous days tA. After this, xi

transitions, in the next time step and with probability
γ, to U. Otherwise, xi remains in disease state A for a
further tU days, without ever passing to U. In other
words, there is a probability that worker i never
feels unwell.

(v) Symptomatic infectiousness: If worker i is unwell,
such that xi = U, then i remains in this state for a
total of tU contiguous days, after which worker i
passes to the recovery step.

(vi) Isolation due to symptoms: In addition, if worker i is
in work and unwell, such that pi = 1 and xi = U, then
pi → 0 for the current time step. That is, as soon as an
individual becomes unwell, they do not come into
work (provided that they are transparent).

(vii) Recovery: After tA + tU time steps since the transition
to disease state A, worker i becomes disease free. If
pi = 0, then xi transitions to Q as i goes into a post-
symptomatic quarantine state, in which it remains
for a total of tQ consecutive time steps, after which i
goes to the immunity step. Else, that is if pi = 1,
worker i passes to the immunity step.

(viii) Immunity: At the end of the infection, with prob-
ability δ, the worker develops viral antibodies so
that xi → R and pi → 1. Else, with probability 1 − δ,
the worker does not become immune, so that xi →
S and pi → 1. If xi = R at any time step, irrespective
of the value of pi, then worker i remains in R for
the rest of the simulation, and pi remains 1.

The behaviour of opaque workers. Workers who are not-
transparent, oi = 1, are assigned at the beginning of the simu-
lation and remain that way for all time steps. Their behaviour
is identical to that of transparent workers except

(ii0) If pi = 1 and gi = 1, then pi → 0 in the next time step, with
probability ϵ. Otherwise pi remains 1. That is, even if
present opaque workers have unwell contacts, they
might stay in work.

(iv0) If pi = 1 and xi = U, and xi = A in the previous time step,
then pi → 0 for the current time step with probability ζ.
Otherwise pi remains 1 for the entire time tU. So when



Table 1. Parameter values used in the simulations. See text for
interpretation and justification.

parameter meaning value

N number of workers 100

T period of simulation (days) 100

d mean number of workplace contacts 3–12

O percentage of nodes that are opaque 0–100

α probability of community infection {0, 0.001}

β probability of infection from an infectious

connection

0.1

γ probability of becoming symptomatic 0.95

δ probability of gaining immunity after

infection

0.5

ϵ probability of non-transparent isolating

due to contact

0.01

ζ probability of non-transparent isolating

due to symptoms

0.01

tE incubation period before infectious (days) 4

tA initial asymptomatic period while

infectious (days)

3

tU time following tA until disease free (days) 7

tQ required time of quarantine after

symptoms stop (days)

5

μ1 productivity of home working {0, 0.7, 1}

μ2 productivity at work while sick {1, 0.2, 1}
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opaque workers become unwell, they may not go home
and thus their contacts are unaware that they may be
infected and also do not go home.

2.3. Justification of model choices
The parameter choices in table 1 are chosen to be indicative
and consistent with, rather than specifically fit to, current esti-
mates based on evidence from COVID-19. The reason for not
applying more precise fitting is twofold. First, we are not
attempting to model a particular workplace, region or
nation, nor specific details of governmental test, trace and iso-
late policies. Second, we are trying to elucidate general
principles that might equally apply in future pandemics,
not to make specific data-driven conclusions for the case of
COVID-19.

The particular parameter choices mean that the length of
an infection, following incubation, is tA + tU = 10 working
days, which is consistent with the latest evidence for
COVID-19 [16]. Note that, due to reported low death rates
among otherwise healthy working age populations, we
have simplified by assuming that all workers are eventually
sufficiently healthy to return to work at the end of the infec-
tion; this may be assumed to be a ‘best case scenario’. We
have further simplified by assuming that incubation and
infection times tE,A,U are deterministic, whereas a more repre-
sentative simulation would allow these parameters to be
chosen from a distribution. We have also supposed that no
individual is vaccinated.
At the time of writing, it is not clear what proportion of
individuals obtain immunity having had the disease, so we
make the reasonable assumption that d ¼ 50% of infectious
individuals develop immunity, which lasts for the rest of
the simulation run time. The incubation period before infec-
tiousness, the degree to which individuals are infectious
before they develop symptoms, and the proportion of indi-
viduals that are infectious but never develop symptoms
have also not been clearly established. Thus the relevant par-
ameter choices tE = 4, tA = 3 and γ = 0.95 are intended to be
illustrative of what might be the case. Note that the benefit
of transparency is particularly sensitive to the choice of γ,
the probability of developing symptoms. Although this
value is at the lower end of the current estimate of 4%–41%
of COVID-19 positive patients being asymptomatic [17], the
chosen values of γ can equally be interpreted within the
model as there being a probability of 0.95 of an infectious
patient being detected within three working days through
a combined regime of regularly testing and reporting of
suspicious symptoms.

One simplification in the model is that the probability of
infection β is assumed to be constant, independent of the
number of infectious neighbours, provided at least one neigh-
bour is infectious. This parsimonious assumption, which
corresponds to the classical Greenwood model, e.g. [18], rep-
resents what is suspected about COVID-19, namely that
people in a closed space with inadequate ventilation, in the
presence of at least one infective, are more or less equally at
risk of infection. Alternative hypotheses could be a binomial
Reed-Frost-type assumption (e.g. [19]). To test the sensitivity
of the results to such assumptions, we have also implemented
the other extreme where β rises linearly with the number of
contacts (results not shown). We found that in both the hot
and cold runs the results were qualitatively the same as
those with fixed probability β.

Another simplification in the model is that we have not
implemented specific network topologies that are built
around partial ‘bubbles’ of close contacts that interact with
other bubbles as infrequently as possible. There is an increas-
ing body of evidence in epidemic modelling for COVID-19
that suggests that the benefit of isolation bubbles significantly
decreases when there is a small amount of leakage between
bubbles (e.g [20]). We tested this in preliminary simulations
with synthetic small-world-type networks comprised of
local bubbles with one or two long-range connections to
other bubbles and found that the transmission rate to be
remarkably similar to a random network with the same aver-
age degree. So, as a parsimonious approximation, we use an
Erdös–Renyi graph with a fixed probability of there being a
link between any two nodes.

Throughout each simulation run of the model, all par-
ameters are taken as fixed. Clearly, more accurate
simulations would need to test sensitivity to parameters
changing over time, including the possibility of stochastic
parameter variation. Parameter sensitivity is also key. In
what follows, we shall consider sensitivity to two key par-
ameters, which represent the primary ingredients under
investigation, the degree of opacity O and the average net-
work degree d. We will also conduct Monte Carlo
simulation where the specific network topology varies for
the each value of d.

Finally, we have not sought to understand dynamical con-
sequences of testing, other than to assume that an accurate
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Figure 2. Examples of randomly generated workplace contact networks for six different random initial conditions. Here, N = 15, and one-third of the workforce is
opaque (solid square) and two-thirds of the workforce is transparent (transparent circle). One individual is assumed to be infected with the virus and is in state E
(the orange node labelled 0) whereas all others are susceptible (green). (a–c) Realizations with average degree d = 4; (d–f ) d = 8.
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test is available with near-instant result, as soon as a worker
becomes symptomatic. We also assume transparent workers
whose contacts have a positive test will simply isolate at
home for a requisit period, without receiving a test them-
selves. We note a recent study has suggested that a
programme of widespread polymerase chain reaction (PCR)
testing of contacts of identified cases may be a more efficient
strategy [21]. In future work, it would be interesting to inves-
tigate such a strategy, using the modelling framework
proposed here.
3. Simulation results
All simulations were carried out in Python using the par-
ameter values given in table 1.

We have chosen a workplace with N = 100 employees. In
each run, the topology of this workplace is generated as a
random (Erdös–Renyi) symmetric graph with probability d/
N that a given edge is present such that Aij = 1, independent
of other edges. By definition we choose Aii = 0, hence the
average degree of each graph is actually

(N � 1)
d
N

¼ 0:99d:

For a given opacity, O, we use the same process of ensuring
that node i has probability O that oi = 1 independently of
the value oj for any other node j. Figure 2 illustrates examples
of graphs that are generated in this manner.

When analysing the results of simulations, it is useful to
have a measure of productivity, or the proportion of pro-
ductive work hours

Productivity ¼ 1
NT

X
0,t,T

[i{xi=U,pi¼1}(xi)

þ m1i{xi¼U,pi¼1}(xi) þ m2i{xi=U,pi¼0}(xi)], (3:1)

where i represents an indicator function and μ1,2 ∈ [0, 1]. We
can then define lost productivity via

Productivity Deficit ¼ 1 � Productivity: (3:2)

The rationale behind the parameters μ1 and μ2 is that those in
work are assumed to be fully productive if not sick and have
fractional productivity μ1 if sick, whereas those isolating at
home do no work if they are sick and have fractional pro-
ductivity μ2 if not. In what follows, we shall take two
extreme and one balanced measure of productivity.

‘academic’: m1 ¼ 0, m2 ¼ 1; ‘factory’: m1 ¼ 1, m2 ¼ 0

and ‘office’: m1 ¼ 0:2, m2 ¼ 0:7: (3:3)

Note that in the ‘factory’ case takes the extreme limit that the
work is so menial that mere presence of the workforce is suf-
ficient to assure productivity, whereas the ‘academic’ case
takes the opposite extreme where working from home is
equally effective, but work is impossible when sick.

When running simulations, we shall consider two cases,
which we refer to as running cold and running hot depending
on whether the overall rates of infection in society are
negligible or not:

‘running cold’: a ¼ 0; and ‘running hot’: a ¼ 0:001: (3:4)

3.1. Running cold
In a cold run, the chance of an infection from the outside
world is negligible, so that the parameter α = 0.

We start simulations at time zero with one exposed indi-
vidual and all other individuals in state S (we assume that the
state of the disease in the general population is that there is a
negligible number of individuals who are already immune).
Examples of such simulations are shown in figure 3.

The simulations demonstrate the benefits of transparency.
The left-hand plots show how an infection that starts with
one individual at day 0 quickly dies out for a fully transparent
workplace. By contrast, when 50% or 100% of the workers are
opaque (middle and right panels) the consequence of that
initial infection is still present in the workplace after 100
days. Note how, for fixed values of the other parameters, the
size of the contact network between d = 4 and d = 10 makes
little qualitative difference. However, there is a significant
quantitative difference when not all workers are transparent.
Given 50% opacity, the maximum size of the outbreak is
such that with d = 10 there are about 25 people who are sick
at around day 30, rising to almost 40 people with 100% opacity.
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In addition to single runs, it is useful to generate a statisti-
cal ensemble. We have done this for a range of d and O
values, taking 50 repeats for each parameter value. The
results are shown in figures 4 and 5, which show the pro-
portion of workers that become unwell (enter state U) and
the proportion that go home (have pi = 1) at least once
during the 100 day simulation time.

Observing the results against d (figure 5), we note how,
for the 100% opacity case with degree 10, almost all of the
workforce appear to catch the disease. Thus a certain
amount of herd immunity is established in the population
(recall the immunity rate δ = 0.5) and this is what causes the
infection rate to decrease towards the end of the simulation.
The results for 50% opacity are similar. Smaller contact net-
work sizes however result in smaller infections.

Further conclusions can be drawn from the graphs
plotted against opacity in figure 5. Here note that, for the
case of the highest degree, there is a sharp increase in the
proportion of infected individuals for low opacity. For an
intermediate degree, the proportion of infected individuals
appears to vary more linearly with opacity, with the
sharp increase, if there is one, occurring later, perhaps
around 20% (although note the large standard deviation).
For the lowest degree value, the number of infected indi-
viduals appears to be low, with the sharpest increase at
around 45%.

From these simulations, we can also compute the pro-
ductivity deficit according to (3.1) and (3.2). The results are
presented in figure 6. The results for the ‘academic’ working
environment (green lines) are as expected. In this environ-
ment, well individuals are equally productive at home as in
the workplace. So productivity is greatly enhanced by high
transparency. In the case of factories and mixed offices,
especially the factory, the productivity curve is more
n-shaped and it may seem that optimal productivity can be
gained at 100% opacity. But at what price? In this scenario,
for the higher degrees, the majority of the workforce have
caught the virus, and it seems clear that in reality the factory
will need to be closed down, because it has become a hotbed
of infection.
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3.2. Running hot
We also performed exactly the same set of simulations (with
fresh randomisations, of course) in the case of running hot (cf.
(3.4)). Here, the same initial condition is used as for the cold
case, with one randomly chosen exposed individual (state E)
at t = 0 with all others in state S. The difference now is that,
with N = 100 and α = 0.001, approximately every 10 days a
new infected individual is likely to enter the workplace.
Data that are exactly analogous to those in the cold case are
presented in figures 7–10.

It is worth commenting on the different time-course
dynamics in figure 7 than figure 3. In the case of a completely
transparent workforce (left-hand panels) note how the infection
does not die out for the case of running hot. This is because
approximately every 10 days a new infection enters the work-
place. Thus the number of sick individuals (about three for
d = 4 and about seven for d = 10) remains constant as does the
number of workers at home (about eight and 20, respectively)
throughout the simulation. Note that the number who are sick
at any one time is roughly d times the number who would be
expected to be sick if there was no contact within the workplace.
For either 50% or 100% opacity, in the case of low degree (upper
middle and right panels), the running hot case causes the infec-
tion to last much longer in the workplace, with a much wider
peak than the running cold case. The maximum number of
infected individuals also rises, compared to the cold runs,
which is even more apparent in the case of 100% opacity.

These observations, based on just isolated simulation
runs, are born out in general, in the Monte Carlo parametric
runs in figures 8–10 which, apart from the value of α, are run
under exactly the same assumptions as figures 3–4 in the cold
case. The results here are broadly similar to the cold case, but
note the dire consequences of large opacity in terms of the
spread of the disease.
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3.3. Analysis
A simple analysis can estimate the reproduction number r0 in
the case of different opacities and average network degree,
along with the size of the infection within the workplace as
a function of parameters by passing to a continuum limit.
Taking the limit of a sufficiently long time and sufficient net-
work size T, N ≫ 1, and assuming that ϵ = ζ = 0 for simplicity,
we can apply a standard mean-field approximation to obtain
an equivalent system of ordinary differential equations, e.g.
[22, ch. 10]. Specifically, taking the limit of continuous time,
Δt → dt, and of a large network of homogeneous mean
degree d, applying this method yields the following equival-
ent SIR system:

_S ¼ (1 � d)
t

I � v
d
N

bSI � aS, (3:5)

_I ¼ aS þ v
d
N

bSI � 1
t

I (3:6)

and _R ¼ d

t
I, (3:7)
where S, I and R now represent the numbers of the total
workforce in states S, {I, U} and R, respectively, as a function
of time (dot represents differentiation with respect to a new
continuous time variable). Here,

t ¼ tA þ tU and v ¼ O=100%

represent the time of infection and proportion of opaque indi-
viduals, respectively, δ is the proportion of people who gain
immunity upon recovery and d/N represents the chance
that two individuals are connected within the workplace
(the average degree of the network divided by the total
number of individuals). Note that total population is con-
served, that is S + I + R = N is constant.

We first non-dimensionalize the model (3.5)–(3.7), scaling
populations with the total population N and time with the
recovery timescale τ such that

(S, I, R) ¼ N(S�, I�, R�), t ¼ t�=t, (3:8)
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to find

_S� ¼ (1 � d)I� � r0S�I� � aS�, (3:9)

_I� ¼ aS� þ r0S�I� � I� (3:10)

and _R� ¼ dI�, (3:11)

where

r0 ¼ vdbt and a ¼ at: (3:12)

Note that r0 is the basic reproduction number of the outbreak,
representing the average number of new infections one
infected person generates within the workplace. The par-
ameter a = ατ is the balance of timescales between new
infections entering the workplace and infected individuals
recovering (recall a = 0 is the ‘running cold’ scenario such
that no new infections are entering the workplace). Along
with the immunity rate δ, which is already dimensionless,
these three parameter groupings control the behaviour of
the infection within the workplace and will determine the
dynamics of the disease. Total population is still conserved,
now scaled such that S* + I* + R* = 1.

The immediate benefit of non-dimensionalization is that
the relative importance of the parameters of the simulation
becomes obvious. For example, r0 depends on the product
of d and ω, which implies the opacity that a workplace can
tolerate before r0 > 1 is inversely proportional to d the average
number of interactions per worker. This duality between O
and d is also apparent in the simulation results (cf. the red
curves in figure 4 with 5, and figure 8 with 9).

Moreover, steady states of the system (3.9)–(3.11) indicate
what we expect to happen for long times. This varies depend-
ing on the values of parameters r0, a and δ.

When a > 0 is non-zero (the running hot scenario) with
some level of immunity δ ≠ 0, the steady state is S0* = I0* = 0,
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R0
* = 1, that is everyone eventually catches and recovers from

the disease. When recovery confers no immunity (δ = 0), we
find the steady state

S�
0 ¼ 1 � I�

0

¼ r0 þ 1 þ a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r0 � 1 � a)2 þ 4ar0

p
2r0

(3:13)

and

I�
0 ¼ r0 � 1 � a þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r0 � 1 � a)2 þ 4ar0

p
2r0

: (3:14)

In this case, the infection is always present within the work-
force with a level dependent on both the infection dynamics
on the network (r0) and the rate of infection outside the work-
place a. (Note that this collapses to I0

* = 1 − 1/r0 when a = 0 as
would be expected, showing that the infection will die out if
r0 < 1.) Graphs of I0

* versus r0 are shown in the left-hand
panel of figure 11.

For the running cold scenario, such that a = 0, with some
level of immunity δ > 0, the non-trivial steady state is given
by

S�
0 ¼ 1 � R1, I�

0 ¼ 0 and R�
0 ¼ R1,

where R∞ satisfies the transcendental equation

r0(R1 � 1) � d þ 1 ¼ (1 � r0 � d)e�r0R1=d: (3:15)

Note that R∞ = 0 is always a solution to (3.15) for all r0, δ > 0,
but there are also non-trivial solutions, which we plot in
figure 11 as a function of r0, for various 0 < δ < 1. There is a
(transcritical) bifurcation at r0 = 1 such that for r0 < 1 the
non-zero steady-state value of R*0 is R0

* = 0, implying that
the infection dies out. For r0 > 1, the non-trivial value of
R∞ > 0 becomes the stable steady state. Note how the R∞

curve rises steeply with r0, thus explaining the shape of
infection curves in figures 4 and 5.

4. Findings from the model results
Although we have only run the simulations for a fixed set of
parameters, the analytical results suggest a certain universal-
ity to our findings. In particular, there is an inverse
proportionality between opacity and average contact degree
(since r0 = ωdβτ); the greater the average connectivity within
the workplace, the smaller the opacity must be to avoid the
infection taking hold and eventually reaching the potential
non-trivial equilibria described in §3.3.
In order to maximize productivity, figures 6 and 10 also
show that, in most types of workplace, it is advantageous
to have almost complete transparency. This is despite the
fact that this involves sending every worker home as soon
as they are in contact with an infectious colleague. The excep-
tion is the case that we have called a ‘factory’, which is the
extreme case where there is no work done from home and
productivity is simply the same as attendance. Here, of
course, it is best to send no one home, so that optimal pro-
ductivity is obtained at an opacity of 100%. However, we
have shown that this case leads to the fastest possible
spread of infection and the largest infected population
within the workplace. In reality, if contact tracing is being
conducted throughout the general population, such a scen-
ario is likely to lead to the workplace being identified as a
hotbed of infection, leading to the ‘factory’ being forced to
shut down, negative publicity for the employer and possible
prosecution. Also, recall that the ‘factory’ scenario unrealisti-
cally ignores the loss of productivity due to sick workers.
Recalling the ‘n’-shaped nature of the productivity deficit
versus opacity curve, especially in the case of running cold
(figure 6), it would seem that an optimal strategy to maxi-
mize productivity, even in the ‘factory’ case, would be
again to maximize transparency within the workforce.

It might be useful to reflect on what the variable ‘opacity’
really represents. The opacity of the workforce could be con-
strued as the availability of regular testing to that workforce.
We have said that transparent workers go home when they
enter state U, that is, they first develop symptoms. Instead,
we could alternatively consider the state U to be the return
of a positive test. Then tA represents the length of time
between catching the virus and testing positive. In such a
scenario, rather than thinking of workers as having either
helpful or unhelpful behaviours, we can consider transpar-
ency as the degree to which a rapid, accurate, regular
testing regime is undertaken in the workplace.

The key finding from our simulations then is that a policy
of maximum transparency is optimal not only for stopping
disease spread (which is unsurprising) but also in terms of
maximizing productivity of the workplace. These results
suggest that making a workplace safe to reopen in the post
peak phase of a pandemic such as COVID-19 requires the
adoption of a number of changes to the running of the work-
place and new behaviours on the part of both employers and
employees.

For example, employees will presumably have, as a con-
dition of employment, to declare to their employers when
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they have developed symptoms of the virus or tested posi-
tive. They would also need to be incentivized to identify
those in the workplace with whom they have been in contact
and to quarantine at home. Employers will have to facilitate
these communications and put in place arrangements to
back-fill posts left empty through sickness absence and quar-
antine. In a running cold scenario, where infection in the
general population is sparse, there could additionally be a
requirement for employees to report when they have been
exposed to the virus outside of the workplace; to keep the
workplace safe, workplace contacts of this employee could
also be required to quarantine

There are well-defined and evidence-based behavioural
science principles that can be used to inform how to support
and encourage required changes in behaviour. These have
been summarized as they apply to reducing infections
during the pandemic in a number of recent reviews and com-
mentaries [23–25] and have obvious application to plans to
make return to work safe. They suggest that to be effective,
a workplace campaign would need to: create a collective
viewpoint emphasizing how people can look after each
other; ensure messages concerning changes to behaviour
come from trustworthy and credible sources; and ensure
that whatever employers and employees have the capability,
opportunity and motivation for what they are being required
to do.

It would be interesting in future work to extend the mod-
elling framework in this paper to include the modern idea of
mechanism design from economic game theory, see for
example [26] for application of these ideas to epidemic mod-
elling. In particular, we could seek to enumerate the benefit of
different mechanisms that might incentivize transparency in
the workplace. That work, which is beyond the scope of
this study, should presumably be accompanied by empirical
or ethnographic research.
5. Conclusions, behavioural implications and
tentative public policy recommendations

The main model finding is that in all situations there is a
benefit of what we have called ‘transparency’ in the safe
and productive operation of workplaces during a pandemic,
and the relationship we have uncovered between the degree
of transparency and the safe size of the average working
group.

A key question is how one might ensure that such trans-
parency is enacted in practice. It is well-established within
behavioural science that incentives offered to compensate
for potential losses may be particularly effective as motiva-
tors, [27]. The independent SAGE committee report [28] on
how best to support effective application of testing for the
virus and contact tracing recommends that support for iso-
lation should be provided. Concerns about social
disapproval and fairness are likely to interact with, and
have reinforcing effects on, compliance with requirements
for transparency and quarantining [29].

It is also well established that compliance is also more
likely if employers and employees feel a sense of ownership
and control over the way that a workplace scheme is
designed and run. A perception that one has control over
aspects of the workplace and job role has long been linked
to increased sense of well-being, lower perceived stress and
better general health (e.g. [30]). Recent evidence review
suggests that key to adherence to quarantine are clear under-
standing of the disease and quarantine procedures, social
norms and perceived benefits of quarantine, perceived risk
of the disease and practical problems such as maintaining
supplies and financial consequences of being out of work
[31]. In light of this, government advisory bodies have
issued guidance to encourage quarantining that includes
emphasizing civic duty, advertising the changing social
norms and allowing others in the community to express dis-
approval and stressing the value of the organization, in this
case, the employing organization.

In the light of these observations and the scientific con-
clusions in the previous section, it would seem helpful to
make some tentative recommendations directed at policy
makers, both government and employers, as well as to
employees in the kind of closed, fixed-interaction workplaces
envisaged in this study.

Organize workplaces into small, intersecting groups. We
recommend that all workplaces should seek to minimize
the average number of work contacts per worker. Other
studies have suggested work should take place in fixed
‘bubbles’ that do not interact with each other. For most
operations, strict bubbles are not feasible. Instead, our
results show that the necessary degree of transparency
(the rigour to which test, trace and isolate is required) is
directly proportional to the size of the average workplace
interaction network.

The no detriment principle. We recommend workplaces
engender a culture where there is no perceived detriment
to a worker being transparent. One issue can be a work-
place where there are a lot of self-employed or ‘gig
economy’ workers who only get paid when they are pre-
sent. Mechanisms need to be established so that all
workers are fully remunerated if they are required to
self-isolated and penalized if they are found to be at
work while infectious. One such policy intervention
could be the introduction of governmental statutory sick
pay for all workers irrespective of their contractual
status, from day 1 of self-isolation.

The benefit of mutualism. As described above, we need to
ensure that workplace campaigns to encourage transpar-
ency are effective. A sense of shared ownership in
maintaining an infection-free workplace would need to
be inculcated through a sense of collective efficacy. This
might involve an employee/employer partnership that
runs its own workplace test, trace and isolate system.
This may be more effective than a scheme administered
by an outside authority where there is the potential for
lack of trust, for example over data privacy.

Financial and other disincentives for non-compliant work-
places. For some businesses, there may be a temptation for
the employer to seek short-term profit over long-term
benefit. If infection rates are low in the general population,
there may be unscrupulous or ignorant employers who try
to keep everyone in work. We saw this in our models for
the ‘factory’ scenario, in which theoretical maximal pro-
ductivity could be achieved with no transparency
whatsoever. It should be the function of a health and
safety inspectorate to provide large penalties to deter
such behaviour which would clearly not be in the public
good.
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Personalized solutions for individual workspaces The quan-
titative findings in this study are a result of the generic
parameter choices made in the simulation runs of our
mathematical model. Some of these are disease parameters,
which for COVID-19 remain unclear at the time of writing.
Others related to the nature of the work; for example, what
exactly constitutes the social distance between two workers
can greatly affect the probability of infection between indi-
viduals. We recommend that individual employers should
be encouraged to run a playable version of the mathemat-
ical model we have introduced in order to test the safety
and feasibility of their operation. This may also involve eth-
nographic studies both to observe how interactions happen
in reality and also to design the optimal psychological and
policy interventions to obtain the desired outcome.
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