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Recent clinical work has implicated network structure as critically important in the initiation
of seizures in people with idiopathic generalized epilepsies. In line with this idea, functional
networks derived from the electroencephalogram (EEG) at rest have been shown to be sig-
nificantly different in people with generalized epilepsy compared to controls. In particular,
the mean node degree of networks from the epilepsy cohort was found to be statisti-
cally significantly higher than those of controls. However, the mechanisms by which these
network differences can support recurrent transitions into seizures remain unclear. In this
study, we use a computational model of the transition into seizure dynamics to explore the
dynamic consequences of these differences in functional networks. We demonstrate that
networks with higher mean node degree are more prone to generating seizure dynamics
in the model and therefore suggest a mechanism by which increased mean node degree
of brain networks can cause heightened ictogenicity.

Keywords: network dynamics, epilepsy, dynamical systems, graph theory, EEG

INTRODUCTION
Epilepsy is a serious neurological disorder characterized by the
propensity of the brain to generate spontaneous and recurrent
seizures. Traditionally, seizures have been defined as “a tran-
sient occurrence of signs and/or symptoms due to abnormal,
excessive, or synchronous neural activity in the brain” (1). Very
recently, the international league against epilepsy (ILAE) has fur-
ther refined the definition of epilepsy (2) whereby an individual is
now proposed to have epilepsy if one of the following conditions
is met:

1. Experiencing two unprovoked seizures more than 24 h apart.
2. Experiencing a single unprovoked (or reflex) seizure with a

probability of further seizures similar to the general risk of
recurrence (~60%) if two unprovoked seizures had occurred.

3. An epilepsy syndrome is diagnosed.

It is important to note that epilepsy is a general term to cap-
ture over forty, often diverse, syndromes. However, in each case, the
generation of clinical signs and symptoms are presumed to require
large regions of the brain to be subject to abnormal dynamics and
the initiation, recruitment, and spreading of such dynamics is facil-
itated by the network of synaptic connections between neurons
and between regions of the brain. This is reflected in the recogni-
tion of the ILAE that many epilepsy syndromes are associated with
disruptions to either global or local brain networks (3).

However, a precise definition of global and local brain net-
works is surprisingly non-trivial. In the global case, one can
consider large-scale structural networks as defined by white matter
tracts of axons that connect distal brain regions. These networks

can be estimated non-invasively using diffusion imaging. An
alternative is to examine the statistical inter-relationship between
time series recorded at different locations in the brain, thus, defin-
ing a “functional” rather than a structural network. While to
some extent, functional networks are constrained by the struc-
tural architecture of the brain, they also carry contributions from
the dynamics of brain activity (4). We recently studied func-
tional networks derived from scalp electroencephalogram (EEG)
at rest and demonstrated significant differences between func-
tional networks of people with idiopathic generalized epilepsy
(IGE), their first-degree relatives, and healthy controls (5). Sig-
nificant differences across a number of graph theory measures
highlighted abnormalities in both the epilepsy cohort and their
first-degree relatives. The most significant of these was that the
mean node degree of networks inferred from both people with
IGE and their relatives was much greater than that of controls, but
that no differences were found between patients and their rela-
tives. This observation suggests that differences between patients
and controls cannot be attributed to medication, and thus, altered
functional networks are associated with a propensity to gener-
ate recurrent seizures (i.e., epilepsy). However, abnormalities in
these networks alone are not sufficient to generate seizures (since
they are present in the relatives of people with IGE, whom them-
selves are seizures free) suggesting that the interplay between
functional network structure and the dynamics supported by
them must play an important role in seizure generating capability
(ictogenicity).

The use of mathematical modeling to attempt to address this
and related questions has grown substantially in the past few
years. Particularly at the macroscopic scale, where the average
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response of a mass of neurons is represented by systems of dif-
ferential equations, several studies have derived insight into the
potential dynamic mechanisms that enable seizures associated
with spike-wave discharges to emerge spontaneously from back-
ground activity (6–10). Lopes da Silva et al. (11) proposed a
scenario in which the spontaneous transitions between back-
ground activity and seizure states arise due to bistability, i.e.,
that the background state and seizure state “coexist” and ran-
dom inputs can perturb the brain from one state to another.
This can be interpreted in terms of either state being able to
be reached without a change in underlying constants or slowly
varying parameters of the system. This type of model was used
to demonstrate that the emergence of either focal or generalized
seizure like events could occur due to either specific network dis-
ruptions or to alterations in excitability within apparently normal
network structures (12).

Motivated by a desire to understand the fundamental mecha-
nisms of seizure transitions more clearly, the concept of bistability
has formed the basis of more abstract models of the brain, for
example, the so-called Z6 model (13), which provides a phenom-
enological representation of the critical features of more realistic
physiological models. These abstract models, which we might con-
sider to represent a normal form of the more detailed physiological
representations, have recently been extended to study the role
that explicit network structures have in facilitating transitions into
seizure activity (14, 15).

Here, we build on this previous modeling work to further
understand the role of network topology in the generation of
transitions into seizure dynamics. In order to understand the
potential consequence on ictogenecity of the differences in net-
work structure highlighted by Chowdhury et al. (5), we artificially
construct networks that preserve the values of mean node degree
for each subject. When these networks are used as the connectivity
structure for a bistable dynamic network model, we observe that
networks with higher mean node degree transition more read-
ily to a seizure state. We therefore suggest a mechanism by which
increased mean node degree of brain networks can cause increased
ictogenicity.

MATERIALS AND METHODS
MATHEMATICAL MODEL
Since we focus on the role that network structure plays in tran-
sitions between background and seizure states, we do not con-
sider a detailed model of each node in a network. Instead, the
foundation of our present work is a network of abstract mod-
els that are designed to capture a bistable transition between a
“background” state and a high-amplitude “seizure” state [see, e.g.,
Kalitzin et al. (16)]:

d

dt
Z D

�
ajZ j4 C bjZ j2 C C

�
Z C + .t / , (1)

where ZD xC iy is a complex variable (function of time); (a, b)
are real constant coefficients, and CD cC i& is a constant com-
plex coefficient. The term +(t ) is the complex input to the system,
which incorporates a white noise component to mimic the effects
of exogenous fluctuations.

A network model, where each node has as its basis the system
described in Eq. 1 is then constructed:

d

dt
Zi D

�
ajZi j

4
C bjZi j

2
C c C i&

�
Zi C

NX
jD1

GijZj C +i .t / (2)

Here, we consider the dynamics of N units, with linear interac-
tion through an adjacency matrix G, where white noise is generated
independently for each node within the network. In the current
work, G is scaled by a factor of 0.1 to preserve transitions between
states.

Model parameters are based upon our previous work (16) so
that each node lies within the bistable regime. This allows tran-
sitions to occur between the steady state (SS), and limit cycle
(LC) attractors, where the LC is considered to represent seizure
dynamics.

CLINICAL EEG RECORDINGS AND CONSTRUCTION OF FUNCTIONAL
NETWORKS
The network measures that form the basis of this study were
inferred from clinical EEG recordings as described in Ref. (5).
In brief, these recordings consisted of 19 channel scalp EEG
obtained using standard 10–20 placing with an average reference,
and sampled at 256 Hz. The recordings were band-passed between
1 and 70 Hz, and notch-filtered between 48 and 52 Hz to exclude
mains frequency interference. The subjects from whom the EEG
recordings were taken are divided into two main groups: 35 peo-
ple with heterogeneous IGE and 40 healthy controls. From each
EEG recording, one artifact-free, eyes-closed, 20 s segment was
extracted representing a“resting state”or“background”EEG activ-
ity. Chowdhury et al. (5) found significant differences between
controls and patients in the 6 and 9 Hz“low alpha”frequency band,
and we therefore focus on that band here. The Hilbert transform
was applied to the band-pass filtered EEG to generate instanta-
neous phase and amplitude estimates. For each electrode pair, the
phase-locking factor [PLF, also known as phase-locking value (17)
or mean phase coherence (18)] was calculated as follows:

C1 D cij D
1

Ns

�����
NsX

kD1

e iD#ij .tk /

����� (3)

where D#ij(tk) is the instantaneous phase difference between sig-
nals i and j at the time point tk. The D#ij(tk) were reconstructed
from the original signals using the Hilbert transform.

This yields a value between 0 and 1 reflecting the strength of
synchronous activity between each pair of signals. Functional net-
works were then constructed using electrode locations as nodes
and PLF values as connectivity weights. Since the PLF measure
is symmetrical, the resulting functional connectivity networks are
undirected.

NETWORK MEASURES
The derived functional networks were quantified using the follow-
ing graph theory measures: mean degree (MD), degree variance
(DV), and local clustering coefficient (CC). The degree of a node
is defined as the sum of the weights of the edges incident to that
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particular node. The MD and DV are defined as the average and the
variance, respectively, of degrees over all nodes in the network. The
local CC of a node in a network measures how close its neighbors
are to a complete network (graph).

GENERATION OF ARTIFICIAL NETWORKS
We note that the networks used for connectivity in the model in
this study were not directly inferred from patient data, rather “sur-
rogate” networks were prepared, which preserved properties of the
networks studied in Chowdhury et al. (5). Each matrix was orig-
inally based on the functional connectivity matrix inferred from
the aforementioned EEG data. An undirected binary network with
the equivalent value of MD as the original matrix was constructed
by applying a set of thresholds to the original, and choosing the
threshold for which MD was preserved. Further a computational
algorithm was applied (19) in order to randomize the matrix, pre-
serving the degree vector and therefore the MD value. In brief,
the algorithm randomly swaps nodes and recalculates the degree
vector, checking for disparity. For each original matrix, we con-
structed 30 artificial random binary matrices with the same MD
value as the original weighted connectivity matrix. We verified that
the spectrum of the artificial patient and control derived networks
was different, confirming a difference in topology of the artificial
networks.

MEASURE OF BRAIN NETWORK ICTOGENICITY
We measured the “ictogenicity” of each network by performing
simulations using the network as the connectivity matrix for the
mathematical model. Since we calculated this measure of icto-
genicity from model simulations, we could define an appropriate
model state that captured transitions between the non-seizure and
seizure dynamics of the model. In the current work, the model
seizure state was defined as a solution with local maxima and
minima having magnitude >0.5.

For each simulation, of the model Eq. 2, we calculated the time
that each node spent in a LC, normalized to the simulation time.
Averaging over all the nodes, we obtain the probability of any node
to be in a LC and we refer to this probability as the brain network
ictogenicity (BNI).

STATISTICAL ANALYSIS
For comparison of quantitative network measures between groups,
we used a non-parametric Kruskal–Wallis one-way ANOVA test.
Results are declared significant for p < 0.05. For post hoc pairwise
comparisons between groups, a Bonferroni corrected multiple
comparison test was performed with significance level of 0.05.

RESULTS
FUNCTIONAL NETWORKS
Chowdhury et al. (5) reported that the MD of functional networks
derived from people with epilepsy was higher than controls. In
Figure 1, we show the distribution of MD for both epilepsy and
control subjects included in that study. In this study, we focus on
the dynamic consequences of changes in node degree independent
of specific network topology and connectivity weights. We remove
a layer of complexity from these networks by transforming them
into binary (unweighted) networks, while preserving the MD of
networks extracted from the EEG data. Figure 1 demonstrates the
match in value of mean node degree between the original net-
works and the artificially derived alternatives (see Materials and
Methods).

Since the MD is accurately preserved in our artificial networks,
the significant difference in MD between patients and controls is
also maintained, as shown in Figure 2. The use of binary, rather
than weighted networks leads our artificial networks to have higher
DV than the original networks, as demonstrated in Figures 2B,E.
A further reason for this difference is that the networks in Chowd-
hury et al. (5) were normalized to the DV value of 500 surrogate
random networks, while in the present case of binary networks
such normalization is not possible. However, Figures 2B,E show
that a significant difference in DV between epilepsy and control
subject derived networks is preserved.

Figures 2C,F demonstrate a lack of significant difference in
CC between artificial “control” and “epilepsy” networks, in con-
trast to the EEG derived networks. This demonstrates that our
artificially generated networks have removed some specific topo-
logical features of the original data, including those related to
clustering.

FIGURE 1 | Mean node degree values for each subject (blue dots) and each corresponding artificially constructed binary network (red dots).
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FIGURE 2 | Statistical analysis of the differences between the group
mean values of people with epilepsy and healthy controls based on
the MD, DV, and CC measures of the connectivity matrices. (A–C)
represent data from original networks, whereas (D–F) represent data for
artificial networks. (A,D) show MD, (B,E) show DV, and (C,F) show CC.
The y -axis of each panel separates the two groups (control and patients),
and the x -axis represents the group values of the corresponding network

measure. The results are color coded blue for the control group and red
for the epilepsy group (except for panel F, in which the epilepsy group is
colored grey to indicate a lack of statistically significant difference). The
horizontal line and the circle show the variance and the mean value of the
corresponding network measure. The mean values are considered as
statistically significant different if there is no overlap between the lines
within a panel.

MODELING RESULTS
For each value of MD extracted from the epilepsy and control
cohorts, 30 artificial networks were generated, preserving the MD.
These networks were used as the connectivity scheme in the
bistable model as described in Section “Materials and Methods.”
For all simulations of our network model Eq. 2, we fixed model
parameters corresponding to the bistable phase space of a single
node {a, b, c, &}D {�1, 2, �0.9, 1C d&}, where d& is a random
number distributed equally in the interval [�0.2, 0.2]. This choice
is made to avoid artificial phase locking because of the equal phase
velocities within our multi-unit configuration. For each network,
30 simulations were performed with random initial conditions.
The resulting dynamics were quantified according to the BNI mea-
sure described in Section “Materials and Methods.”An example of
the calculation of BNI and the effect of changes in node degree is
given in Figure 3.

Four different kinds of dynamics can be seen in Figure 3. In
Figure 3A, the model spends a large portion of the simulation time
in the “background” attractor before transitioning to the seizure
state. Thus, the BNI measurement is low. In contrast, the trajec-
tory of the model in Figures 3B–D moves more quickly into the
“seizure” attractor, and so BNI is higher. In addition, in Figure 3C,
one of the nodes has not transitioned to the trajectory correspond-
ing to the LC attractor in a single node. Rather, this node is being
driven around the corresponding fixed point and therefore the

BNI in this case is lower. It is clear that in this model, BNI provides
a measure of how quickly the trajectory of the system performs an
“escape” from the background to the seizure attractor.

Figure 4 shows BNI calculated from all simulations for artificial
networks derived from the patient and control networks. It can be
seen that BNI is significantly higher in the patient versus the con-
trol networks, and thus, networks with an increased node degree
are shown to have a greater tendency toward seizure activity in this
model.

DISCUSSION
In this study, we used mathematical modeling to investigate the
link between the structure of brain networks and their propensity
to generate seizure dynamics. Building upon previous studies, we
used human EEG data to generate artificial networks preserving
MD values, and thus, “isolating” this property for investigation.
When networks with high MD were used as connectivity matrices
in a model of seizure transitions, we observed significantly more
time in the seizure state, as compared to networks with lower MD.
We therefore provide evidence for a link between certain prop-
erties of network structure (here the MD) and the potential to
generate seizure dynamics.

From the network perspective, MD and DV reflect how well
connected the nodes within a graph are. Thus, networks with high
MD and low DV would tend toward being fully connected, whereas
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FIGURE 3 |Trajectories of four simulations with the Z6 model over
different artificially created networks. The figure contains (A–D) four
simulations with different BNI values (as indicated). The x -axis of each panel

represents the simulation time (arbitrary units) and the y -axis represents the
amplitude of the simulated signal. In each case, all 19 channels are overlaid in
different colors.

networks with high MD and high DV will have an increased num-
ber of “hub-like” nodes. Our randomized networks in the patient
group displayed higher MD and DV than controls and there-
fore fall predominantly into this latter category. This suggests that
“hub-like” nodes can more easily drive the rest of the network into
the seizure state if they themselves enter that state.

Previous modeling studies in the context of temporal lobe
seizures and the hippocampus have suggested a role for hub-like
connectivity in generating hyper-excitability (20). Such structures
have also been shown to be critical for dementia (21), a condition
with which epilepsy is comorbid (22), as well as other patholo-
gies of the brain (23). In a related study, Clemens et al. (24)
performed a resting EEG derived, functional connectivity net-
work analysis of people with juvenile myoclonic epilepsy (JME)
and control subjects. They found no statistically significant dif-
ferences in measures of local and global efficiency of the derived
networks, where “efficiency” relates to the length of the shortest
paths between nodes. We should therefore aim to elucidate exactly
which topological features of networks can contribute to the gen-
eration of seizure dynamics. In future work, we will explore in
more detail the dynamic role of centrality, efficiency, and other
features of network topology (25) on seizure generation in our
model.

The model employed in this study provides an abstract rep-
resentation of the epileptic brain. It preserves the potential for
transitions between “background” and “seizure” dynamics as pos-
tulated in the bistable perspective of generalized seizures (11). This
simplified approach allows one to focus upon the role that net-
work structure plays in the propensity for dynamic transitions.

Indeed, this approach has been used with success in terms of
estimating transition frequencies (26), exploring the key dynamic
components for intermittent transitions (15) and examining the
role of specific connection topologies in small networks (14). An
interesting extension to the current work would be to assess the
interplay between intrinsic node dynamics and network structure.
This could be achieved by using abstract models with richer bifur-
cation structures (15, 27), or by employing neural mass models of
specific epileptiform dynamics (8, 10, 28, 29).

We built artificial networks preserving MD so as to focus on
the implications of changes in this property, with respect to the
process of transitions from SS to LC. Precise analysis of the model
Eq. 2 leads to the conclusion that the behavior of the system in
these terms may depend on several factors such as (a) noise level,
(b) initial conditions, (c) connection strength, and (d) network
topology. As the main goal was to examine the influence of net-
work topology, we removed the influence of all other factors by
setting appropriate noise levels, randomly sampling initial condi-
tions, and using binary instead of weighted networks. In future
work, we will consider the effects of adding larger variance noise
into the model, in order to facilitate recurrent transitions. In addi-
tion, we can expand upon the approach by analyzing weighted
networks. We envisage that the addition of these kinds of het-
erogeneities will lead to a richer repertoire of model dynamics,
and therefore, might be useful in further stratifying the effect of
network topology on dynamic transitions.

Benjamin et al. (14) examined escape times into seizure dynam-
ics in a similar model applied to networks with a small number of
nodes. In that case, it was possible to derive analytic expressions
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FIGURE 4 | Statistical analysis of the significant differences between
control and patient groups based on the mean BNI measure. The y -axis
separates the two groups, while the x -axis represents the mean BNI value.
The horizontal line and the circle represent the variance and the mean value
of BNI, respectively.

for escape times depending on the topology of networks. How-
ever, the complexity of this problem grows significantly as larger
networks are considered. Here, in order to link directly with clini-
cal data, we used a model with 19 nodes to represent EEG sensor
space. Rather than focusing on explicit network structure, we were
able to correlate changes in BNI with properties of the network,
e.g., the MD. This provides an avenue to explore the seizure gener-
ating potential of more complex networks and could be extended
in future work to include other graph theoretic measures, such as
the CC, which has also been shown to vary significantly between
people with IGE and controls (5, 27).

We used functional connectivity as the basis for the networks
applied to our model, reflecting the nature of the available clin-
ical data. This approach means that our model is not a direct
representation of brain regions interacting over large scales via
axonal connections, though such a model can be built in a patient
specific way using diffusion data (29, 30). Rather, our model pro-
vides an abstract representation of the resting state of the brain,
as projected onto the level of EEG. Networks derived from this
projection are thought to be constrained by structural connectiv-
ity, though they are not a direct reflection of it (4). Functional
networks by definition represent nodes that are evolving similarly,
and therefore, capture a potentially important means by which
information can be exchanged between brain regions (31). We
should therefore consider that the “connections” of such networks
can facilitate the emergence of pathological dynamics through

synchronization, and we demonstrate here that this can lead to
greater seizure generating potential in the epileptic brain.

On the other hand, functional networks can be viewed more
simply as transformations of time series data recorded from sub-
jects, i.e., as mappings from multivariate time series onto a static
topological network that reflects a combination of structural and
dynamic contributions for that instance of time. From this per-
spective, our modeling approach gives us a tool with which to
interrogate data from people with epilepsy and compare these
with control subjects. We therefore aim to explore further whether
properties of the BNI derived from functional networks can be
used as a marker in the clinical setting. We postulate that in
some instances BNI may be able to distinguish between networks
that appear similar when examined by traditional graph theoretic
measures.
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