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A computational study of density-dependent individual movement
and the formation of population clusters in two-dimensional spatial

domains

John R. Ellisa�, Natalia B. Petrovskayaa
aSchool of Mathematics, University of Birmingham, Birmingham, UK

Abstract

The patterns of collective behaviour in a population emerging from individual animal move-
ment has long been of interest to ecologists, as has the emergence of heterogeneous patterns
among a population. In this paper we will consider these phenomena by using an individ-
ual based modelling approach to simulate a population whose individuals undergo density-
dependent movement in 2D spatial domains. We �rst show that the introduction of density-
dependent movement in the form of two parameters, a perception radius and a probability
of directed movement, leads to the formation of clusters. We then show that the properties
of the clusters and their stability over time are di�erent between populations of Brownian
and non-Brownian walkers and are also dependent on the choice of parameters. Finally, we
consider the e�ect of the probability of directed movement on the temporal stability of clusters
and show that while clusters formed by Brownian and non-Brownian walkers may have similar
properties with certain parameter sets, the spatio-temporal dynamics remain di�erent.

Keywords: animal movement, individual-based modelling, Brownian motion,
density-dependence, pattern formation

1. Introduction

Spatial distributions of animal and plant taxa are often distinctly heterogeneous [30, 45].
The phenomenon of spatial aggregation also known as patchiness [30, 46], clustering [20, 35, 89]
or, more generally, ecological pattern formation [65], is important in many areas of ecological
research. There are many drivers behind formation of spatially aggregated structures in the
population. Spatial aggregation is important for reproduction [16, 17, 87, 98], in prey-predator
interactions [34, 26, 60, 74, 82, 94], and competition [10, 33, 63, 91]. There have also been
numerous studies that have found populations congregating for foraging and hunting [13, 23,
78, 86], thermo-regulation [7, 27], or for purely social reasons [8, 22].

Among all varieties of factors responsible for spatial aggregation, interorganismal interac-
tions can play a dominant role when spatial clusters of animal species are formed at small
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spatial scales, e.g. within a particular forest, lake, meadow or agricultural �eld [1, 36, 43,
59, 64, 68]. Such heterogeneous spatial distributions are related to smaller time scales where
reproduction and other interactions are not involved. There are di�erent mechanisms that
have been identi�ed to cause small time scale pattern formation in populations, one of them
being the response of individual animals to the presence of their conspeci�cs [98]. Some pop-
ulations aggregate as a consequence of animal ‘sociality’ [31, 32] and modify their movement
based on movement characteristics of their close neighbours as seen in ocks, herds or swarms
[32, 43, 77]. Patterns of high population density have also shown to be formed by a change
in the speed of movement with density whereby an animal moving into a higher density area
will slow down causing clusters [48, 49]. Other animals will simply be more inclined to move
towards their conspeci�cs and aggregate as a consequence of this density-dependent movement
[41, 49, 56, 89, 90].

While the density-dependent movement of individual animals is known to inuence the spa-
tial distribution of populations of some species with the mechanisms mentioned above, it is still
unclear how local biotic interactions in certain species lead to spatial aggregation of the popu-
lation. One example that has partially motivated our work is spatial distribution of grey �eld
slug Deroceras reticulatum in agricultural �elds. Slug patches (i.e. spatial sub-domains with
high slug density) have been shown to have a su�ciently stable spatio-temporal distribution
[2, 6, 24], yet the relative importance of biotic factors in determining the spatial distribution of
slugs within one generation on a spatial scale of arable �eld remains an open question. There
is some empirical evidence that movement of slugs exhibits density-dependence as individual
slugs respond to the presence of their conspeci�cs by following their trails [97] and further ex-
perimental and theoretical study is required to investigate the hypothesis of density-dependent
movement in slug populations. As slugs are among the most dangerous pests in agriculture,
development of a comprehensive modelling framework with strong predictive capacity and
exible enough to incorporate various types of density-dependent movement should help with
better understanding of mechanisms of spatial heterogeneity which, in turn, will lead to more
informed monitoring and control decisions.

For small-scale, within-generation spatial patterns formed as a result density-dependent
movement, the process of pattern formation in a population can be modelled by simple in-
teractions between individuals resulting in the emergence of collective behaviour [88]. In this
paper we consider a stochastic model for two-dimensional (2D) individual-based movement
which includes a density-dependent directional bias. Our aim is to then analyse the spatio-
temporal population dynamics and understand how the degree of spatial aggregation in the
population is determined by the type of individual movement. Our approach to modelling
2D density-dependent movement is partly based on our previous work [20] where formation
of spatial clusters has been con�rmed for 1D density-dependent movement. Meanwhile, the
results obtained in the 1D model cannot be directly extended to a more realistic 2D case with
more sophisticated rules of individual movement. Several new important questions arise, the
de�nition of a 2D spatial cluster being one of them. The importance of accurate quanti�cation
of ecological spatial patterns has been acknowledged by scientists since long ago [28, 45, 37] and
it is clear that an irrelevant de�nition of a spatial cluster may result in irrelevant conclusions
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about the spatio-temporal population dynamics. Hence we design carefully the concept of a
spatial cluster when our model is developed. Our de�nition incorporates two basic principles
of cluster identi�cation - measuring the distance to the nearest neighbour [14] and measuring
the number of neighbours within a spatial unit [50] - to help us to analyse quantitative prop-
erties of the spatio-temporal dynamics such as number of clusters, the mean cluster area, and
the mean population within the cluster. Based on our de�nition of a spatial cluster we com-
pare the results of the 2D model with the previous 1D model [20] to demonstrate that, while
density-dependent movement in 2D domains is responsible for cluster formation, it results in
much more complex spatio-temporal dynamics.

Another question we are concerned with is how the quantitative properties of spatial dis-
tribution respond to a change in the parameters of directed movement. The investigation
of this question is important as it allows one to conclude on whether the process responsi-
ble for spatial pattern formation can be at least to some degree identi�ed and understood
by pattern analysis on its own [38, 54, 69]. The two cases we study in the paper are where
animals perform Brownian motion (i.e. described by a Gaussian dispersal kernel) [40, 83] and
non-Brownian motion (described by a power law dispersal kernel) [93]. We therefore analyse
how the spatio-temporal dynamics of the population distribution depend on key parameters
in our model, i.e. the probability of directed movement and the perception radius, for both
Brownian and non-Brownian walkers. The concept of the temporal stability of population
clusters is introduced and we argue that the analysis of spatial distributions alone may not be
su�cient to conclude about the movement type. It will be shown in the paper that, while the
spatial distributions of Brownian walkers and non-Brownian walkers can be indistinguishable
when considering quanti�cation of spatial clusters, their spatio-temporal dynamics are still
di�erent.

The paper is organised as follows. In Section 2, we outline the rules of the model and intro-
duce density-dependent movement. The de�nition of a cluster will be explained and validated
to provide a reliable framework for further analysis. We justify our choice of parameters of di-
rected movement in Section 3 and present the results of simulations of Brownian walkers with
that parameter set. We then proceed to discuss the results of simulations of non-Brownian
walkers with an ‘equivalent’ parameter set to allow for further comparison between Brownian
and non-Brownian movement. Proceeding from this we directly compare results from simula-
tions of Brownian walkers and non-Brownian walkers in Section 4. Finally, we o�er discussion
of the results and our conclusions in Section 5.

2. Model of density-dependent movement

To simulate density-dependent animal movement in a 2D domain we use the individual-based
modelling approach1 [11, 29, 39, 88]. We closely follow the methods developed previously in
our 1D model [20]. For simulation of density-dependent random movement the position of

1To facilitate reproducibility and date re-use, we have made the computer code used to generate our results
available in a repository [21].
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each individual is given at a discrete moment in time tk, k = 0; 1; :::, tk+1 = tk + �t where �t
is the time increment. In this paper we consider �t = 1 for all time steps; for simplicity we
drop the k and refer to t as the series of integers that are discrete time steps.

For a population ofN animals, the location of the nth animal at time t is given by (xn(t); yn(t)).
If this is known, the position at time (t+ 1) is simulated as

(xn(t+ 1); yn(t+ 1)) = (xn(t) + �x; yn(t) + �y); (1)

where �x; �y are the spatial increments that the animal moves in the x and y direction
respectively during the time increment �t = 1. The movement of animal n starts from an
initial position (xn(0); yn(0)) = (xn;0; yn;0).

As the step size will be the radial distance an animal moves to from its previous position,
it is convenient consider the movement in terms of polar coordinates, (r; �) with the centre
at (xn(t); yn(t)). To de�ne the increments �x; �y, we consider the radial distance �r =p

(�x)2 + (�y)2 that an animal will move during one time step and the direction � in which
the step is made. Therefore the change in x and y of the position of an individual at any given
time step is given by

�x = (�r)cos(�); �y = (�r)sin(�): (2)

Following [15, 39, 88], we consider �r to be a random variable distributed according to
a certain probability density function �(�r) which we refer to as the dispersal kernel. For
simplicity, we assume all animals in a population have identical movement behaviour so � is
the same for all animals.

Since we are studying the spatial patterns of the population arising from di�erent rules
of individual movement, in particular Brownian and non-Brownian motion, we consider two
cases. In the �rst case, the dispersal kernel is a normal distribution with a mean of 0 and a
variance �2:

�(�r) = �G(�rj0; �2) =
1

p
2��2

exp
�
�

(�r)2

2�2

�
: (3)

We note here that, as the radial distance an animal moves must be non-negative, we use a
half-normal distribution in our computer simulations:

�(�r) = �G(�rj0; �2) =

8
<

:

2p
2��2 exp

�
� (�r)2

2�2

�
if �r � 0;

0 if �r < 0:
(4)

Where � is the standard deviation of the original normal distribution. The distribution (4) is
a special case of the folded normal distribution and has a mean �f and standard deviation �f
given by

�f = �
r

2
�
; �f = �

r
1�

2
�
: (5)

However, we also need the baseline de�nition (3) when a comparison with the results of our 1D
study is made further in the paper. We will refer to animals performing movement described
by Eqn. (3) as Brownian walkers.
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In the second case, the dispersal kernel is given by the power law:

�(�r) = �P (�rjk; ) =
C

(k + �r)
; (6)

where k > 0 and  > 0 are parameters of the distribution and C = 0:5( � 1)k�1 is the
normalising coe�cient, i.e.

R1
�1 �(�)d� = 1. Animals performing movement described by Eqn.

(6) will be referred to as non-Brownian walkers further in the text.
The formulation of �r follows the same framework as the calculation of the step size �x in

our 1D model [20], however the direction of movement given by the variable � in a 2D domain
will be di�erent. For a non-density-dependent random walk, � would be considered to be a
random variable distributed according to a uniform distribution in the region [0; 2�]. In our
model, the de�nition of � will have to be adjusted to include density-dependent movement,
the mechanism for which is introduced in the next section.

We consider movement in a closed domain of size Lx � Ly so that, for any n, 0 < xn(t) <
Lx; 0 < yn(t) < Ly for all t. In this paper we consider a square domain so that Lx = Ly = L
The closed boundaries are modelled by introducing an additional rule. Let the value of �x
or �y generated for the (n + 1)th step be such that either xn(t + 1) < 0, xn(t + 1) > L,
yn(t + 1) < 0 or yn(t + 1) > L. Then this step is aborted, hence e�ectively changing the
animal’s decision to leave, and a new �r and � are generated to make sure that the animal
remains inside the domain, i.e. 0 < xn(t+ 1); yn(t+ 1) < L.

For the initial condition, we consider a population distribution that is uniform over the
2D domain. This involves generating the initial coordinates of each individual in the x and y
direction using the probability density functions �x0(x) and �y0(y) which are both independent
on space; �x0 = �y0 = 1=L = const.

2.1. Density-dependent movement
So far we have described a simulation procedure of independent animal movement where

the movement of an individual is not dependent on the location of their conspeci�cs. This
procedure is similar to those used in many other studies of spatio-temporal population dy-
namics [71, 83, 88]. Having constructed this model, we can now make adjustments so that
the direction of movement � of an individual is dependent on the position of other animals in
their vicinity, thereby introducing density-dependence.

To account for this, we introduce a ‘perception radius’ R � 0 [75, 81]. This is the distance in
any direction that an individual can detect the presence of other animals. Only those animals
within the perception radius at time t can a�ect the movement of the individual. This is
illustrated in Fig. 1(a), where the perception radius is shown as the dotted circle around the
individual in red.

Once the perception radius R has been introduced, the next step is to identify regions with
high population density within a circular domain de�ned by R. In our model, this is achieved
by splitting a circle of radius R around an individual into S segments of equal size. The
number of neighbouring individuals in each segment is then counted to give the population

5



a b

Figure 1: (a) An individual (shown in red) can detect the presence of other individuals within a circular
domain de�ned by the perception radius, (b) the area within the perception radius split into segments
with the most populated segment highlighted.

within the segment and therefore to �nd the segment s� with the largest population ms. The
mean angle �d of neighbours within only the segment s� is then calculated as

�d =
Pms

i=1 �n;i
ms

; (7)

where �n;i is the angle between animal n and animal i, (xn; yn) are the coordinates of the animal
whose direction of movement we are calculating, and (xi; yi); i = 1; :::;ms are the coordinates
of all neighbours within the segment s�. Hence, �d is the angle of directed movement - the
direction an animal will move if it ‘decides’ to move towards its conspeci�cs. An example
is shown in Fig. 1(b) where the highlighted section is the one with the largest number of
neighbours. The animal will move towards the centre of the neighbours in the highlighted
segment. If more than one segment has the joint largest population then one of those segments
is chosen with equal probability between them.

The number of segments S is a convenient parameter in our model as it allows us to avoid
ambiguous cases when the direction of individual movement has to be determined. A detailed
discussion of the number of segments is provided in appendix Appendix A.1 where our choice
of the value of S is explained.

We now introduce a second parameter P 2 [0; 1] to quantify the strength of the directional
bias. Let u be an auxiliary random variable which is uniformly distributed over the interval

,


 = [P � 1; P ]: (8)

For undirected movement of a given individual, we introduce a variable �r, which has a uniform
distribution over the region [0; 2�]. If the individual animal performs directed movement, we
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use the angle �d in (7). The direction of movement is then de�ned as follows:

� =

(
�d; if u � 0:
�r; if u < 0:

(9)

If P = 1 then the probability density function of u will be uniform in the region [0; 1] and
therefore � = �d, meaning an animal will always move towards an area of high density. Con-
versely, if P = 0 then the probability density function of u will be uniform in the region [�1; 0]
and therefore � = �r, meaning an animal will move with a random walk independent of its
conspeci�cs. In our study we consider 0 < P < 1 so that there is always a degree of random-
ness in the direction of movement, i.e. an animal will sometimes ‘ignore’ its conspeci�cs and
move in a completely random direction. Thus we refer to the parameter P as the probability
of directed movement.

2.2. Cluster de�nition
The overall aim of our study is to analyse the dynamics of population clusters as a function

of the movement parameters. Clusters can be loosely thought of as spatial sub-domains with
higher population density than in surrounding sub-domains. Hence we have to approximate
the population density from information we have about each individual in the domain before
we develop a more formal de�nition of a cluster. Possible methods for extracting information
about the population densities from individual coordinates include the use of a Voronoi di-
agram [3, 85] or kernel density estimation [12, 66, 79, 96]. However these methods may not
provide any extra insight into the cluster properties (e.g. average cluster area, average cluster
population, etc.) as required for our study of spatio-temporal dynamics. We therefore employ
the method of ‘bins’ previously used in our 1D model [20]. We partition the domain into a
uniform square grid of BxB spatial sub-domains (bins) so that the length of a bin is L=B
where L is the length of the domain. The number of animals inside a given bin divided by the
area of the bin will then approximate the population density within the bin.

We then say that a group of bins form a cluster if the following conditions hold:

� For a given parameter bu, where 0 < bu < 1, there is a bin that contains a proportion of
the total population that is larger than bu.

� Any bin adjacent to a bin that forms part of a cluster also belongs to the cluster if it is
greater than or equal to a second parameter bl, where 0 < bl < bu.

One example of cluster identi�cation above is shown in Fig. 2(a) where bins that form a
cluster are shown as shaded areas in the domain. The number of clusters in the domain along
with the cluster area (size) and population size within the cluster are useful properties for
comparing cluster formation with di�erent parameter sets in the model. These properties
were calculated in the 1D model [20] so comparison between the two models can also be made.
We use the MATLAB software [19, 53] to analyse cluster properties. One example is given in
Fig. 2(b) where the ‘boundary’ function in MATLAB is employed to ascertain the size of 2D
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Figure 2: (a) The domain split into 20�20 bins with cluster-forming bins shaded and (b) An example
of the boundary of a single cluster in region D.

cluster. The population of each cluster is calculated based on the sum of bin populations for
bins that contain a cluster.

We note that the number of bins B is an arbitrary parameter in our de�nition of cluster.
The bin size has to be chosen as it is su�ciently small so to allow for low density bins to be
found between clusters, i.e. clusters do not ‘merge’ together. It has also to be su�ciently
large so that individuals that uctuate to small distances away are still included as part of
the clusters. We therefore study how the number of clusters in the domain is e�ected by our
choice of the number of bins. Namely, we consider how the number of clusters will change if
we use a di�erent number of bins to identify clusters in the same spatial distribution. One
example of the number of clusters along with the mean cluster population when changing the
number of bins is shown in Fig. 3. It can be seen from the �gure that the number of clusters
and the cluster population become insensitive to the choice of the number of bins B when
B � B�, where B� = 20 in this example. Furthermore, the results of our computational study
(see appendix Appendix A.2) reveal that, although a di�erent choice of parameters in the
problem will result in slightly di�erent properties of the cluster, the threshold number of bins
B� remains the same and the number of clusters does not change if a B� �B� grid of bins is
further re�ned.

Once the number of bins B has been de�ned, we choose the cluster thresholds based on the
requirement that, for a cluster to be counted, there must be a bin with at least double the
average bin population density and the cluster ends when a bin is reached which is below the
average density. This allows most areas of high population density to be identi�ed without
noise signi�cantly a�ecting the results. Since the average bin population density can be
estimated as N=B2 on a grid of B �B bins, we de�ne bu = 2N=B2 and bl = N=B2.
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Figure 3: Sensitivity of the de�nition of cluster to the choice of the number of bins. The spatial
distribution of the population of of Brownian walkers (3) is analysed at time t = 1000. The simulation
parameters are L = 10, N = 1000, P = 0:6, � = 0:02, and R = 1. The threshold number of bins
is B� = 20: the number of clusters and the mean cluster population do not change when a grid of
B��B� bins is further re�ned. (a) The number of clusters and (b) the mean cluster population when
changing the number of bins (squared) when identifying clusters.

3. Simulation results

In this section we study the properties of the spatial distribution of a population where the
individuals perform density-dependent random movement. We particularly want to examine
how the properties of the spatial distribution change subject to the type of random movement
as de�ned by the dispersal kernel (3) or (6), and the choice of the controlling parameters for
density-dependent movement, i.e. the perception radius R, and the probability of directed
movement P .

For the rest of this paper, in our simulations we consider a square domain with length L = 10
and the total population size N = 10000. We use a 20 � 20 grid of bins in all simulations
discussed in this paper (see Section 2.2). Our choice of B = 20 results in cluster thresholds
bu = 50 (i.e 0:5% of the total population N) and bl = 25 (i.e 0:25% of N). We also note that
the variance �2 in the dispersal kernel (3) we use in our simulations has to be small compared
to L so that the boundary conditions do not dominate the dynamics. Similarly the perception
radius R must be smaller than L but bigger than the typical step size to allow for several
clusters to form. If R is too large in comparison to L then each animal will be inuenced by
the majority of the rest of the population and all animals will congregate in a single cluster
in the centre of the domain. Alternatively, if R is too small in comparison to the typical
step size, each animal will only be inuenced by few others and in the subsequent time step
is likely to have moved to an area where entirely di�erent con-speci�cs are now inuencing
their movement, never allowing clusters to form. This is discussed in more detail with speci�c
examples further below.

Typical simulation results are shown in Fig. 4 for Brownian walkers and Fig. 5 for non-
Brownian walkers. The density-dependent movement parameters used are P = 0:6, R = 1.
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Figure 4: Examples of the (a) individual animal paths over 1000 time steps and (b) �nal distribution
of animals after 1000 time steps of a simulation of a population of Brownian walkers.
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Figure 5: Examples of the (a) individual animal paths over 1000 time steps and (b) �nal distribution
of animals after 1000 time steps in a simulation of a population of non-Brownian walkers.

For Brownian walkers we use the normal distribution kernel (3) with � = 0:02, and for the
non-Brownian walkers we use the power law distribution kernel (6) with  = 2; k = 0:0036.
In both cases the density-dependent individual movement has resulted in the formation of a
number of clusters. In the case of Brownian walkers, all individuals converge to points in the
domain as can be seen in Fig. 4(a) where individual animal paths are shown. The formation of
distinct clusters as time progresses is shown in Fig. 4(b). In the case of non-Brownian walkers,
it is possible to see some of the large step sizes in Fig. 5(a) which are characteristic of the
power law dispersal kernel. Therefore clusters are not so visually distinct as in the Brownian
walkers case but there are still several clusters that emerge as shown in Fig. 5(b). Hence
we further examine how the type of motion and the parameter values change the number of
clusters formed in the domain and their properties.
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3.1. Brownian walkers
We begin with the case of Brownian motion (3) where we want to investigate the properties

of the spatial distributions and compare our results with the 1D model. It has been discussed
in [20] that in the case of Brownian walkers one can expect the emergence of 2D animal clusters
with properties similar to those observed in 1D simulations. We therefore choose the ‘baseline’
movement parameters as � = 0:02; P = 0:6 and R = 1 to make our 2D simulation consistent
with the 1D model.

One example of the development of the spatial distribution over time is shown in Fig. 6.
The formation of clusters is already seen at time t = 100, with no apparent di�erence between
the distributions at times t = 1000 and t = 10000. This suggests that the system evolves to a
steady spatial distribution as in the 1D model [20]. To investigate this further, we calculate
the number of clusters and their population and spatial size using the de�nition of a cluster
in Section 2.2. To determine the population and spatial size of the clusters we calculate the
mean number of individuals in each cluster and also the mean area that each cluster covers for
all clusters identi�ed in the system at a particular time step. The evolution of those properties
over time is shown in Fig. 7 up to t = 1000. Although the system never reaches a steady state
in a strict sense due to uctuations in the population and area of clusters, it is readily seen
that the properties converge and do so in a timescale t � 200. Extending the simulation time
up to t = 20000 shows that the quasi-steady state holds as no further changes are seen.

t = 0 t = 100 t = 1000 t = 10000
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Figure 6: The spatio-temporal dynamics emerging from a random-uniform initial distribution of a
population of Brownian walkers at time t = 0. Movement parameters are P = 0:6, R = 1 and
� = 0:02. (a) t = 0, the initial distribution of the population; (b) t = 100, the formation of clusters
already begin at small times; (c) t = 1000 and (d) t = 10000, clusters are ‘temporally stable’, as there
is no visible change in the number of clusters and their shape over time.

Stable formation of clusters is further con�rmed by results in Fig. 8 where spatio-temporal
dynamics are examined for a lower probability, P = 0:2, of directed movement. In this case,
we expect the initial timescale of cluster formation to be longer when P is small, and this
can be seen in Fig. 8, showing cluster properties over time t = 20000. The convergence of
cluster properties now happens at approximately t = 600 and there are larger uctuations in
the mean cluster population. This is because individuals will be more likely to move in and
out of clusters than for higher values of P .

Tables 1 and 2 show how the number of clusters, the mean cluster area and the number
of free individuals, i.e. animals that are not within a cluster, depend on the parameters of
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a b c

Figure 7: An example of the development of clusters over time when the probability of directed move-
ment is P = 0:6. The other parameters are R = 1 and � = 0:02. The quantitative properties of the
spatio-temporal dynamics are (a) the number of clusters, (b) the mean cluster population, and (c)
the mean cluster area. The mean values of the cluster properties have been calculated from all the
clusters that emerge in one simulation. The quantitative properties converge in a timescale t � 200.

a b c

Figure 8: An example of the development of clusters over time when the probability of directed move-
ment is P = 0:2. The other parameters and the �gure legend are the same as in Fig. 7. The
quantitative properties converge in a timescale t � 600.

directed movement. For each parameter set, 10 simulations are made up to t = 10000. We
then record the number of clusters, the number of free individuals and the mean cluster area
of all clusters in each simulation and take the mean of these numbers from all 10 simulations,
giving the data in the tables.

Let us vary the probability P of directed movement. There are fewer individuals that will
move further away from the centre of a cluster as P increases, because at each time step they
have a high probability of moving directly to the centre. Therefore we expect that the animals
will be clustered very densely and all animals will be contained within a cluster when P is
large. This conclusion is con�rmed by the results in Table 1. It is readily seen from the table
that there is no signi�cant trend in the number of clusters as P increases, but the cluster area
and the number of free individuals decreases.

Table 2 shows the change in cluster properties when we vary the perception radius R.
The signi�cant trend when R is increased is that the number of clusters decreases with only
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P = 0:1 P = 0:2 P = 0:3 P = 0:4 P = 0:5 P = 0:6 P = 0:7 P = 0:8 P = 0:9
Nc 23.4 24.2 25.0 24.9 25.1 24.9 24.8 24.9 24.9

(2.011) (2.486) (2.108) (2.378) (2.283) (2.132) (2.251) (2.601) (2.514)
Ac � 10�2 28.31 10.41 4.97 3.07 2.15 1.42 1.09 0.79 0.55

(1.556) (0.4148) (0.2604) (0.1695) (0.07051) (0.09906) (0.04305) (0.03562) (0.03313)
nf 499.4 222.2 138.1 111.2 80.3 52.6 52.4 58.3 40.1

(68.96) (42.50) (51.99) (45.41) (26.29) (26.55) (26.82) (23.17) (26.51)

Table 1: The mean and standard deviation of properties of clusters that form with di�erent values
of probability of directed movement P at t = 10000, R = 1:0, � = 0:02; Nc is the mean number
of clusters, Ac is the mean cluster area, nf is the mean number of free individuals. The standard
deviation for every mean value is shown in brackets below the mean. The values in the table are taken
over 10 simulations.

R = 1 R = 2 R = 2:523 R = 3 R = 4 R = 5 R = 100
Nc 24.9 6.4 4.2 3.2 1 1 1

(2.132) (0.8433) (0.6325) (0.4216) (0) (0) (0)
Ac � 10�2 1.42 2.30 2.80 2.82 3.26 4.10 3.24

(0.09906) (0.08758) (0.1704) (0.1499) (0.4446) (0.4149) (0.5782)
nf 52.6 24.9 12.9 15.2 1.8 1.9 6.9

(26.55) (20.99) (9.927) (13.92) (5.007) (4.434) (8.293)

Table 2: The mean and standard deviation of properties of clusters that form with di�erent values of
the perception radius R at t = 10000, P = 0:6, � = 0:02. The legend is the same as in Table 1. The
values in the table are taken over 10 simulations.

individual clusters appearing when R � 4. This is because for large R each cluster will attract
animals over a larger area. Since no two clusters can be within the perception radius of each
other without coalescing, there will be space in the domain only for fewer clusters. We note
that the value R = 2:523 in the table presents the case when the area within the perception
radius covers 20% of the domain, i.e. the same proportion of the domain as when R = 1 in
the 1D domain with L = 10 (see [20]). The mean number of clusters is Nc = 4:2 for R = 2:523
and is similar to the mean number of clusters in the 1D model with R = 1 which is given as
Nc = 4:56. We also note that clusters (as we have de�ned them) are di�cult to accurately
identify until R is one order of magnitude greater than � (see Fig. 9) and we therefore apply
the requirement R� � when we proceed in our study so we can be con�dent that the cluster
properties are correct.

Now that we understand how the density-dependent movement parameters P and R inu-
ence cluster formation we also want to check how the cluster properties are related to the basic
characteristics of random movement, i.e. how they depend on the mean step size of Brownian
walkers. Since we cannot directly control the mean step size in our computer simulations,
we use the relationship (5) and vary the parameter � in simulations instead. The results are
shown in Table 3 where it is readily seen from the table that the choice of � e�ects the number
of clusters, the mean cluster area and the number of free individuals. As � increases (and
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R = � = 0:02 R = 3� = 0:06 R = 10� = 0:2

Figure 9: Example distributions of a population of 10000 Brownian walkers at t = 10000 with small
R. Other movement parameters are P = 0:6 and � = 0:02.

� = 0:01 � = 0:02 � = 0:0332 � = 0:04 � = 0:08 � = 0:2
�f = 0:008 �f = 0:016 �f = 0:0265 �f = 0:032 �f = 0:064 �f = 0:16

Nc 25.8 24.9 24.6 24 19.1 11.5
(1.81) (2.13) (1.71) (1.16) (1.46) (0.850)

Ac � 10�2 0.355 1.42 3.64 5.18 19.2 78.2
(0.0158) (0.0991) (0.199) (0.227) (0.914) (5.66)

nf 31.4 52.6 112 129 257 623
(20.0) (26.6) (32.0) (36.6) (53.6) (80.9)

Table 3: The mean and standard deviation of properties of clusters that are formed by Brownian
walkers with di�erent values of �. Given �, the mean step size �f is de�ned according to (5). The
legend is the same as in Table 1. The cluster properties are analysed at time t = 10000, other
movement parameters are P = 0:6 and R = 1.

the mean step size �f increases too), animals are more likely to take larger steps away from a
cluster, leading to clusters with a larger area and in turn this means fewer clusters can exist
in the domain as clusters must be a certain distance away from each other (see the discussion
in appendix Appendix A). Taking a larger mean step size also means that animals are more
likely to move entirely away from a cluster, leading to a higher number of free individuals.
The change in properties is also visible in the example spatial distributions shown in Fig. 10.

We recall that the baseline case considered in our 1D model [20] is R = 1, � = 0:02 and the
mean number of clusters obtained in the 1D system with the above parameters is Nc = 4:56.
Furthermore, we note that � = 0:0332 in Table 3 corresponds to � = 0:02 used in the 1D
model via the relationship (5). Hence some comparison with the 1D model can be made if
we change the perception radius from R = 1 to R = 2:523 as explained in our discussion of
the perception radius above. The properties of spatial distributions obtained with R = 1 and
R = 2:523 are presented in Table 4 where we can see that the mean number of clusters does
not change and agrees well with our 1D results when we use the perception radius R = 2:523 in
our simulations. Thus we conclude that the perception radius is a key parameter responsible
for the number of clusters, while the choice of the mean step size makes an impact on the
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�f = 0:016 �f = 0:0265 �f = 0:16

Figure 10: Example distributions of a population of 10000 Brownian walkers at t = 10000 when
�f = 0:016, �f = 0:0265 and �f = 0:16. Other movement parameters are P = 0:6 and R = 1.

mean cluster area and number of free individuals. Transition from � = 0:02 to � = 0:0332
while R = 1 results in a signi�cant increase in the mean cluster area (see also an example
distribution shown in Fig 10(b) ).

� = 0:02; R = 1 � = 0:0332; R = 1 � = 0:02; R = 2:523 � = 0:0332; R = 2:523
Nc 24.9 24.6 4.2 4.2

(2.13) (1.71) (0.63) (0.63)
Ac � 10�2 1.42 3.64 2.80 7.027

(0.0991) (0.199) (0.1704) (0.4569)
nf 52.6 112 12.9 20.1

(26.6) (32.0) (9.9) (11.4)

Table 4: The mean and standard deviation of properties of clusters that are formed by Brownian
walkers with di�erent values of �. The legend is the same as in Table 1. The cluster properties are
analysed at time t = 10000 at P = 0:6.

Finally, we briey investigate how cluster properties depend on the de�nition of the per-
ception radius R. Let us introduce a ‘decaying’ perception range in the model when animals
located closer to the individual are seen with a greater probability. The decaying perception
radius can be modelled for each individual as follows. The distance d to all other animals is
calculated and, for each other animal, the distance d is then compared to a random number
r generated from a uniform distribution in the region [R0; R1], where the radius R0 > 0 and
R1 > R0. If r � d � 0 then the animal is seen with probability 1 and inuences the direction
of movement. If r�d < 0, then the animal is not seen and has no inuence on the direction of
movement. Since R0 < r < R1, any distance d � R0 will guarantee r�d � 0 and therefore the
animal will de�nitely be seen and a distance d > R1 will guarantee r � d < 0 and the animal
will not be seen. Thus all animals within the radius of R0 are seen, while only a fraction of
the population located within the ring R0 < d < R1 is seen and no animals at the distance
d > R1 are seen.

The results obtained when we vary parameters R0 and R1 are presented in Table 5 (see
also Fig. 11). From the results shown in the table, we conclude that introduction of the
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R0 = 0:75; R1 = 1:25 R0 = 0:5; R1 = 1:5 R0 = 0; R1 = 2

Figure 11: Example distributions of a population of 10000 Brownian walkers at t = 10000 with a
decaying perception radius. Other movement parameters are P = 0:6 and � = 0:02.

decaying perception range preserves cluster formation as clusters still form even when R0 = 0.
Meanwhile, the number of clusters decreases, as the size of the ring R0 < d < R1 is increased.
This is similar to what happens when we use our standard de�nition of the perception radius
and increase R (cf. Table 2). This is probably because, even though the probability of being
‘seen’ is small close to R1, for a large population over a large number of time steps it will
happen frequently enough for two clusters within the distance R1 of each other to coalesce.
Thus, our previous conclusion about the inuence of the perception radius is con�rmed as the
average perception radius (R0 + R1)=2 can still be considered as a parameter of the density-
dependent movement responsible for the number of clusters.

We conclude from the results in this section that the choice of the density-dependent move-
ment parameters P and R inuence the size and number of clusters respectively. The simu-
lation results show a strong relationship between the number of clusters and the perception
radius R. On the other hand, there is no signi�cant relationship between the number of
clusters and the probability of directed movement, P . Varying P in the model results in
formation of less or more dense clusters where clusters with few or no free individuals are
formed when P is su�ciently high. A similar e�ect can be observed when we decrease the

R = 1 R0 = 0:75; R1 = 1:25 R0 = 0:5; R1 = 1:5 R0 = 0; R1 = 2
Nc 24.9 21.7 17.6 10.1

(2.13) (1.06) (1.51) (0.876)
Ac � 10�2 1.42 1.42 1.58 1.95

(0.0991) (0.0909) (0.0927) (0.133)
nf 52.6 81.8 49 40.6

(26.6) (58.4) (19.9) (25.0)

Table 5: The mean and standard deviation of properties of clusters that are formed by Brownian
walkers with a decaying perception radius with di�erent values of R0 and R1 at t = 10000, other
movement parameters are P = 0:6 and R = 1. The legend is the same as in Table 1. The values in
the table are taken over 10 simulations.
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mean step size, although the mean step size �f is not considered as an intrinsic parameter
of density-dependent movement. Meanwhile, we want to emphasize the importance of the
parameter P in our model. When P = 0, animals move independently of their conspeci�cs
and introduction of the perception radius alone will not result in cluster formation (see also
the discussion in section 4).

Also, given the dependence of cluster properties from the parameters of 2D density-dependent
movement, we can con�rm the assumption made in [20] that the formation of clusters in a 2D
domain shares similar properties to the 1D model when Brownian walkers are considered. In
particular, we see the same stable formation of clusters as shown in Figs. 7 and 8 and a similar
number of clusters is formed when we use a 2D counterpart of the perception radius in the 1D
model. Thus, a 1D model of density-dependent movement can be considered as a proxy for a
study of 2D Brownian walkers to allow for signi�cant computational savings and we can use
conclusions made in [20] about the balance between parameters of random movement (i.e. the
mean step size) and directed movement (i.e. the probability P and the perception radius R).

3.2. Non-Brownian walkers
In this section we consider non-Brownian motion simulated by a power law distribution (6).

In order to make a sensible comparison between the results obtained for the dispersal kernel
given by the normal distribution and those obtained for the power law, a certain condition of
equivalence must be established. For distribution with a �nite variance, one way for doing that
is to equalize the variance of di�erent probability distributions. However, this approach does
not work in the most interesting case of fat-tailed distributions, i.e. Eq. (6) with 1 <  � 3,
because the dispersal kernel (6) does not have a �nite variance then. We therefore use a
di�erent approach [4], namely, we equalize the survival probabilities, i.e. the probabilities for
the moving animal to remain within a given domain over a given interval. Let rt be the
radial distance of a given animal at a given time t, then the probability that at the next
observation time (t + 1) the animal will remain within a given distance �r of its previous
location, i.e. rt � �r < rt+1 < rt + �r, is calculated as follows:

P (rt � �r < rt+1 < rt + �r) =
Z �r

��r
�(�)d�: (10)

For the two probability distributions, see Eqs. (3) and (6), we obtain, respectively:

P (rt � �r < rt+1 < rt + �r) = erf
�

�r
p

2�2

�
; (11)

and

P (rt � �r < rt+1 < rt + �r) = 1�
k�1

(k + �r)�1 : (12)

Setting the the survival probability at a hypothetical value 0.9 and taking into account that
erf�1(0:9) = 1:16, we solve Eqs. (11) and (12) for r and equate the results (since r is the same),
thus arriving at the following relation between the parameters:

k = 1:16
p

2�2
�

10
1

� 1 � 1
��1

: (13)
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Therefore, for a given normal distribution with variance �2, parameter k of the ‘equivalent’
(in the sense explained above) power law distribution (6) is given by relation (13). We can
also convert (13) to be in terms of the mean step size �f of the folded normal distribution as

k = 1:16�f
p
�
�

10
1

� 1 � 1
��1

: (14)

When the exponent of the power law is  � 2, then the distribution is heavy tailed and is
used to simulate Levy ight. As we increase , the tail of the distribution becomes more like
that of the normal distribution, and so we should expect the results to become similar to the
results obtained for Brownian walkers (cf. the 1D problem [20]). Hence, for most simulations
we set  = 2, a commonly used parameter value for simulating Levy ight [51, 92, 93] but we
will discuss the e�ect of changing  further below. When analysing the clusters that form,
we continue to use the de�nition in Section 2.2 with a grid of 20 � 20 bins and thresholds
bu = 0:5% of the total population N and bl = 0:25% of the total population N . We also use
the movement parameters P = 0:6, R = 1 and, following Eq. (13) with  = 2 and � = 0:02,
we get k = 0:0036 to make our simulations compatible with Brownian walkers.

The development of the spatial distribution of non-Brownian walkers with the above choice
of parameters is shown in Fig. 12. We see that areas of high population density form but
they are not as clear and dense as the clusters formed by Brownian walkers. The clusters
appear to form in the �rst 100 time steps and there is no obvious further congregation of
the population between the distributions at t = 500 and t = 20000 from visual inspection
although the number of clusters does appear to have changed.

t = 0 t = 100 t = 5000 t = 20000

Figure 12: The spatial distribution of a population emerging from a random-uniform initial distribution
at time t = 0. The population moves according to a power law dispersal kernel (6) and the movement
parameters are P = 0:6, R = 1,  = 2, and k = 0:0036.

The properties of the clusters formed by non-Brownian walkers are plotted in Fig. 13 for
P = 0:6 and Fig. 14 for P = 0:2. When the probability of directed movement is su�ciently
high, i.e. P = 0:6, the number of clusters drops several times in the �rst 4000 time steps and
once more at t � 8000. The number of clusters then stays steady at n = 18 for the remaining
time steps in the simulation. The mean cluster population shifts when the number of clusters
changes (when two clusters merge, there will obviously be an increase in the mean cluster size)
but is otherwise stable with small uctuations as individuals move in and out of clusters. The
mean cluster area stays relatively stable despite shifts in the number of clusters, suggesting
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that the number of clusters and the cluster population have no impact on the spatial size of
the cluster. When the probability of directed movement is P = 0:2, as shown in Fig. 14,
the number of clusters over time is no longer �xed and instead uctuates between 16 and 17
clusters, occasionally dropping to 15 and once to 14 clusters. The mean cluster population
and area also uctuate, much more wildly than for when P = 0:6 but there are no large shifts
in either of those properties after the initial formation. The dynamics of a uctuating number
of clusters is similar to the dynamics seen in non-Brownian walkers in the 1D model where a
similar analysis was done.

a b c

Figure 13: The development of clusters over time. The population moves according to a power law
dispersal kernel (6) and the movement parameters are P = 0:6, R = 1,  = 2 and k = 0:0036. The
quantitative properties of the spatio-temporal dynamics are (a) the number of clusters, (b) the mean
cluster population , and (c) the mean cluster area. The system produces quasi-stable clusters with no
strong uctuations in the quantitative properties.

a b c

Figure 14: The development of clusters over time. The population moves according to a power law
dispersal kernel (6) and the movement parameters are P = 0:2, R = 1,  = 2 and k = 0:0036.
The quantitative properties of the spatio-temporal dynamics are (a) the number of clusters, (b) the
mean cluster population , and (c) the mean cluster area. The number of clusters uctuates with time
resulting in uctuations in the other quantitative properties.

The results in Fig. 13 and 14 suggest that the stability or dynamism of the clusters is
dependent on the probability P of directed movement. When P = 0:6 the system produces
quasi-stable clusters, i.e. the number of clusters does not uctuate although there may be
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occasional changes in the number of clusters. When P = 0:2 however, we have a system where
the number of clusters constantly uctuates. We further investigate the dynamics of these
clusters by calculating the rate of change of the number of clusters. Namely, we introduce a
time interval consisting of �T time steps and a binary function b(t), where b(t) = 0 if there is
no change in the number of clusters over one time step, and b(t) = 1 if the number of clusters
changed between t� 1 and t. The number of uctuations F (t) is then de�ned as

F (t) =
i=tX

i=t��T

b(ti): (15)

The number of uctuations F (t) computed for �T = 100 is shown in Fig. 15, where the value
F (t) at each time step is averaged over 10 simulations. It is seen from the �gure that, after
an initial time period, the number of uctuations stays around 10 over time �T . In contrast,
F (t) calculated when P = 0:6 drops to close to 0 within 100 time steps and remains there for
the rest of the simulation.

As discussed above, if the exponent of the power law, , is increased from  = 2, the tail
of the distribution decays quicker, becoming more like that of the normal distribution. We
found in the 1D model that as  is increased, the distributions that are produced become
more similar to those produced by Brownian walkers. We expect that the same will hold true
in the 2D model and we now examine the distributions that are produced with 2 �  � 5
and compare them with the population distribution of Brownian walkers. Table 7 shows
that indeed, the properties of the clusters are more similar to the Gaussian dispersal kernel
case when  is higher. One notable di�erence is that when  increases, so does the number of
clusters (and standard deviation of the number of clusters). When  is lower, there is a greater
chance of individuals making larger steps. Intuitively, this means that clusters may have to
be further apart otherwise they would merge together. The mean cluster area decreases, as 
increases, because the probability of an individual taking a large step away from the centre
of the cluster is lower. We also see that, apart from  = 2 when there are a large number of
free individuals, the mean cluster population decreases as  increases. This can be explained
by the increase in the number of clusters since the whole population, which remains constant,
is split between more clusters, resulting in smaller cluster populations. We note that when

R = 1 R = 2 R = 2:523 R = 3 R = 4 R = 5 R = 100
Nc 20.7 4.5 3.8 1.9 1 1 1

(1.45) (0.527) (0.422) (0.738) (0) (0) (0)
Ac 0.643 2.50 2.76 6.02 9.13 9.46 9.10

(0.0457) (0.359) (0.318) (2.75) (0.541) (0.595) (0.611)
nf 1998 1657 1639 1454 1286 1295 1321

(62.3) (109) (63.2) (136) (50.4) (45.6) (51.9)

Table 6: The mean and standard deviation of properties of clusters that are formed by non-Brownian
walkers with di�erent values of R at t = 10000, the other movement parameters are P = 0:6,
k = 0:00365 and  = 2. The values in the table are taken over 10 simulations.
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Figure 15: The number of uctuations in the number of clusters per �T = 100 time steps averaged
over 10 simulations. The populations in each simulation move according to a power law dispersal
kernel (6) and the movement parameters are P = 0:2, R = 1,  = 2 and k = 0:0036.

 = 1  = 2  = 3

Figure 16: The population distribution at t = 10000 of non-Brownian walkers using the power law
distribution (6) to generate the step size with  = 1; 2; 3.

 = 1, no clusters emerge in the population; cf. Fig. 16(a). This is due to the power law
distribution (6) with  = 1 meaning there is a high probability of an individual moving long
distances within the domain. Therefore each individual will be consistently moving around
the entire domain, never forming into clusters.

We now briey discuss how basic characteristics of non-Brownian movement determined by
(6) inuence cluster formation. The investigation of this question is less straightforward than
in the case of Brownian walkers (see section 3.1) as the power law distribution does not have a
�nite mean when  � 2. Thus we pool together the movement step sizes made by all animals
(i.e. N = 10000) in the population of non-Brownian walkers over 100 time steps and compute
the ‘mean step size’ �n based on that information. Since the ‘mean step size’ �n obtained
from direct computation depends on the parameter k in (6), we can vary it by varying k in in
our computer simulations. Furthermore, as k is related to the parameter � of the Brownian
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Properties  = 2  = 3  = 4  = 5 Gaussian
Nc 20.7 (1.15) 20.1 (0.876) 22.7 (1.77) 23.3 (1.94) 24.9 (2.13)
Ac 0.643 0.248 0.118 0.0792 0.0153

(4:57� 10�2) (2:11� 10�2) (1:2� 10�2) (8:75� 10�3) (1:05� 10�3)
nc 388 (22.3) 466 (22.8) 430 (36.1) 424 (39.1) 402 (36.9)

Table 7: The mean and standard deviation of properties of clusters at t = 10000 that form in 10
simulations with di�erent movement regimes, Nc is the mean number of clusters, Ac is the mean
cluster area, nc is the mean cluster population. The standard deviation for every mean value is
shown in brackets. The parameters are R = 1, P = 0:6, k = 0:0036, and � = 0:02 in the Gaussian
case.

motion by (13), a relationship between � and �n can also be established. The results are
shown in Table 8, where we take the same range of � as in Table 3. Given the value �, we
�nd k from (13) and then determine �n from direct computation.

� = 0:002 � = 0:01 � = 0:02 � = 0:0332 � = 0:2
k 3:65� 10�4 1:82� 10�3 3:65� 10�3 6:05� 10�3 3:65� 10�2

�n 3:08� 10�3 0.0120 0.0218 0.0332 0.139

Table 8: A comparison between �, k and the ‘mean step size’ �n for non-Brownian walkers. Given
the value k, the mean step size �n is calculated from the �rst 100 steps of N = 10000 animals in the
simulated data.

In Table 9 we calculate cluster properties when k is increased and therefore the ‘mean step
size’ is increased according to the results in Table 8. It can be seen from the table that the
same conclusion can be made as we had for Brownian walkers in section 3.1, i.e. the number
of clusters Nc decreases as �n increases. It is worth noting, however, that cluster properties
are di�erent when the non-Brownian walkers are compared to Brownian walkers through the
relationship between parameters in Table 8. For all values of � we use in our simulations,
the cluster size and number of free individuals is always larger for non-Brownian walkers (cf.
Table 3). These results are also illustrated in Fig. 17 (cf. Fig. 10).

k = 3:65� 10�4 k = 1:82� 10�3 k = 3:65� 10�3 k = 6:05� 10�3 k = 3:65� 10�2

Nc 22.5 21.1 20.7 20.5 17.1
(1.72) (1.45) (1.15) (1.08) (1.20)

Ac � 10�2 39.9 52.8 64.3 64.2 99.4
(2.90) (4.93) (4.57) (7.38) (7.50)

nf 1675 1839 1998 2089 2592
(46.8) (71.3) (62.3) (127) (111)

Table 9: The mean and standard deviation of properties of clusters that are formed by non-Brownian
walkers with di�erent values of k at t = 10000, the other movement parameters are P = 0:6, R = 1
and  = 2. The values in the table are taken over 10 simulations.
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k = 3:65� 10�4 k = 3:65� 10�3 k = 6:05� 10�3

Figure 17: Example distributions of a population of 10000 non-Brownian walkers at t = 10000 when
k = 3:65 � 10�4, k = 3:65 � 10�3 and k = 6:05 � 10�3. Other movement parameters are P = 0:6,
R = 1 and  = 2.

The simulations in this section show, as in the case of Brownian walkers, density-dependent
movement by non-Brownian walkers results in the formation of clusters. However, like in the
1D case, the clusters formed by non-Brownian walkers are less dense than Brownian walkers
and take a longer time to form. Also, the emergence of dynamic clusters, when the probability
P of directed movement is low, has been revealed in the 2D case; see Fig. 14. Although the
dynamics of uctuating clusters was discussed in our previous paper [20], the dependence on
the probability P of directed movement is a new result.

4. Comparison of Brownian and non-Brownian walkers

In this section we investigate the question of whether similar spatio-temporal dynamics of a
population can emerge from Brownian and non-Brownian motion when di�erent values of P
are used. It has been shown in the previous sections that the probability of directed movement
largely controls the size of the clusters that are produced; see Fig. 18 where the mean area
of a cluster is shown to decrease as P increases. We have already established above and in
our discussion of the 1D model [20] that the distributions produced by Brownian walkers are
more dense than non-Brownian walkers. However, a numerical study reveals that there is an
overlap where, for Brownian walkers with P < 0:1, there is a corresponding value of P for
non-Brownian walkers that produces clusters with the same area.

Let us label the probabilities P of directed movement we use for Brownian and non-Brownian
walkers as PB and Pn respectively. To investigate further the similarities between clusters
produced for Brownian walkers when PB < 0:1 and non-Brownian walkers when Pn > 0:1,
we compare the quantitative properties of clusters, i.e. the mean number of clusters, mean
cluster population and mean area of clusters as well as the number of free individuals. We
also measure the degree of aggregation in the population de�ned by the Morisita index [57]:

IM = B
PB

k=1 nk(nk � 1)
N(N � 1)

(16)

where B is the number of bins, nk is the number of animals in bin k and N is the total
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Figure 18: The mean area of clusters of Brownian and non-Brownian walkers produced for the prob-
ability of directed movement P 2 [0:01; 0:9]. The mean values of the cluster area in the graph are
taken over 10 simulations for each value of P and the error bars show the standard deviation. For
non-Brownian walkers, no clusters are formed when P < 0:05. The other movement parameters are
R = 1, � = 0:02, k = 0:0036 and  = 2. Vertical dotted lines show two values of the probability P
(i.e. PB = 0:05 for Brownian motion and Pn = 0:5 for non-Brownian motion) that correspond to
the same mean area of clusters A�c � 0:75 when simulation is done for Brownian and non-Brownian
walkers respectively.

population. The Morisita index provides a measure of how likely it is that two randomly
selected individuals in a given distribution are found within the same bin compared to that
of a random distribution. It has already been used in our study of 1D spatial distributions to
quantify their heterogeneity. However, it is worth noting here that the Morisita index alone
cannot be employed to compare various spatial distributions. Though it provides a measure
of aggregation, the index (16) does not provide any information about the number of clusters
or how they are distributed. Therefore it can only be used as an additional tool for comparing
spatial distributions alongside the other quantitative properties of the clusters.

In Tables 10-11, we present the mean and standard deviation of features of the spatial
distribution for Brownian walkers with certain values of PB between 0:01 and 0:09 and non-
Brownian walkers with Pn between 0:1 and 0:9. From close inspection of the data in the tables,
we see that the properties of clusters are similar for Brownian and non-Brownian walkers when
the probability of directed movement is approximately 10 times higher for non-Brownian
walkers than for Brownian walkers, Pn � 10PB. The exception to this relationship is when
we compare clusters obtained for PB = 0:09 and Pn = 0:9 as only the cluster population and
area are similar, while the other properties start to diverge from each other as the probability
increases.

Fig. 19 shows example distributions for simulations of Brownian and non-Brownian walkers
at t = 10000 with various values of PB and Pn. Visual inspection of these �gures con�rms
that properties of clusters are similar when Pn � 10PB but only for PB � 0:05; Pn � 0:5.
As P increases the similarities of the cluster decrease and the spatial distributions are not as
similar, as illustrated when PB = 0:08 and Pn = 0:8.
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Brownian walkers PB = 0:01 PB = 0:02 PB = 0:05 PB = 0:08 PB = 0:09
Nc 11.9 17.5 20.9 21.9 23.2
nc 512.1 413.1 425.9 431.1 412.3
Ac 3.263 1.648 0.7324 0.4127 0.3538
nf 3937 2803 1159 657.5 563.6
IM 1.346 2.273 6.766 10.81 10.47

Non-Brownian walkers Pn = 0:1 Pn = 0:2 Pn = 0:5 Pn = 0:8 Pn = 0:9
Nc 13.6 19.1 20.3 20.6 19.9
nc 449.0 345.2 385.5 415.5 442.2
Ac 2.981 1.513 0.7643 0.4664 0.3716
nf 3997 3437 2221 1508 1268
IM 1.299 2.131 6.157 12.03 17.76

Table 10: The mean of properties of clusters formed by Brownian and non-Brownian walkers at
t = 10000 that form in 10 simulations with di�erent movement regimes, Nc is the mean number of
clusters, nc is the mean cluster population, Ac is the mean cluster area, nf is the mean number of free
individuals, IM is the Morisita index. Other parameters are R = 1,  = 2, � = 0:02, and k = 0:0036.

Brownian walkers PB = 0:01 PB = 0:02 PB = 0:05 PB = 0:08 PB = 0:09
Nc 0.989 1.27 1.73 2.18 2.66
nc 42.9 29.4 39.3 50.1 53.9
Ac 0.220 0.106 0.0600 0.0318 0.0198
nf 318 162 138 115 84.5
IM 0.0298 0.102 0.539 1.09 1.42

Non-Brownian walkers Pn = 0:1 Pn = 0:2 Pn = 0:5 Pn = 0:88 Pn = 0:9
Nc 1.78 1.37 1.57 1.90 1.66
nc 66.0 24.9 34.1 39.3 45.7
Ac 0.490 0.124 0.0705 0.0481 0.0499
nf 190 209 116 75.8 118
IM 0.0171 0.0449 0.450 1.56 5.86

Table 11: The standard deviation of properties of clusters formed by Brownian and non-Brownian
walkers at t = 10000 that form in 10 simulations with di�erent movement regimes. Other parameters
are R = 1,  = 2, � = 0:02, and k = 0:0036. The legend is the same as in Table 10.
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a (PB = 0:02) b (PB = 0:05) c (PB = 0:08)

d (Pn = 0:2) e (Pn = 0:5) f (Pn = 0:8)

Figure 19: Example distributions of Brownian walkers (top) and non-Brownian walkers (bottom) at
t = 10000 with varying probabilities of directed movement. Probabilities PB and Pn are shown in
brackets for Brownian and non-Brownian walkers respectively. The other movement parameters are
R = 1, � = 0:02, k = 0:0036 and  = 2.

One result of directed movement in the 2D model is that for large P the shape of clusters
becomes ‘stretched’. One example of stretched clusters can be seen in Fig. 19f when Pn = 0:8
showing the distribution formed by non-Brownian walkers. To measure the di�erence between
the shapes of a ‘stretched’ cluster of Fig. 19f and a ‘uniform disk’ cluster of Fig. 19c, we analyse
the distribution of angles from the centre of the cluster in each spatial distribution of animals
in a cluster. Namely, the median position rm of all animals within the cluster is calculated for
spatial distributions in Fig. 19c and Fig. 19f. We then �nd the angle of each animal to the
point rm and then re-orientate each cluster in the spatial distribution so that the peak angles
are at ��=2. This allows us to use data from all the clusters in the distribution to generate a
histogram of angle frequencies as shown in Fig. 20 (a,c). The slope from the peak at �=2 can
then be �tted with a power law distribution as shown in Fig. 20(b,c). From examining the
�gures and �tting the slope from �=2 to � we conclude that the clusters produced by Brownian
and non-Brownian walkers have a very di�erent shape indeed, despite having similar cluster
properties.

Formation of ‘stretched’ clusters is in part due to formulation of our model where we use
splitting the area inside an animals perception radius into segments. We believe this rule
makes sense biologically as an animal is unlikely to move in a direction which it perceives to
be the mean position of its cospeci�cs rather than a direction which it perceives to have the
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a b

c d

Figure 20: (a) The distribution of angles between animals in a cluster and the centre of the cluster for all clusters
shown in Fig. 19 produced by Brownian walkers when PB = 0:08 (a,b) and non-Brownian walkers when Pn =
0:8 (c,d). The distribution between �=2 and � �tted with a power law distribution is (b) 6941=(6:558 + �)0:989

with r2 = 0:83, and (d) 404=(�0:037 + �)0:632 with r2 = 0:98.

highest density. The use of segments narrows down the direction an animal will decide to
move to a region that contains the highest density. We acknowledge however, that there may
be other methods of modelling density dependent movement that do not result in stretched
clusters and further study is required to understand the phenomenon.

We have seen above that the appearance of dynamic clusters, i.e. spatio-temporal dynam-
ics where the number of clusters uctuates over time, is dependent on the probability Pn of
directed movement in non-Brownian walkers. Meanwhile, it immediately follows from com-
parison of Figs. 13(a) and 14(a) that dynamic clusters are not a feature that presents in the
system of non-Brownian walkers for all values of Pn. For example, dynamic clusters appear
when Pn = 0:2 in Fig. 14(a), yet there are no dynamic clusters when Pn = 0:6 in Fig. 13(a).
Furthermore, if we suppose that Brownian walkers with the PB = 0:02 produce similar clusters
to non-Brownian walkers with the ‘counterpart’ probability Pn = 0:2, then we might expect
those clusters to be dynamic when the spatio-temporal dynamics of Brownian walkers is con-
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sidered. However, as Fig. 21(a) shows, the clusters appear to be stable with only a shift in
the number of clusters happening at t � 3500. This is obviously di�erent to the dynamics of
non-Brownian walkers when Pn = 0:2 on the same timescale.

a b

Figure 21: The number of clusters over time for (a) Brownian walkers with PB = 0:02 and (b) non-
Brownian walkers with Pn = 0:2. The other movement parameters are R = 1, � = 0:02, k = 0:0036
and  = 2.

We can therefore conclude that for certain probabilities of directed movement, the distribu-
tions produced by Brownian and non-Brownian walkers can appear similar. This only holds for
PB < 0:05 for Brownian walkers for some corresponding Pn for non-Brownian walkers. While
some cluster properties remain similar, the shape of clusters and the cluster stability are not.
Moreover, as PB increases, other properties such as the number of free individuals produced
by each movement type diverge and when PB > 0:1 there is no corresponding Pn that will
produce a similar distribution. Due to the di�erence in cluster stability, we have the important
result that while the spatial distributions of Brownian walkers and non-Brownian walkers can
be indistinguishable when considering certain cluster properties, the spatio-temporal dynamics
are still di�erent.

5. Discussion and conclusions

Spatial aggregation is important in many areas of ecological research including population
dynamics [58, 72, 44], nature conservation and renewable resource management [18, 99, 100],
agriculture and forestry [1, 42, 80, 84, 95], and monitoring and pest control [67, 70, 73].
Whilst understanding of this phenomenon has signi�cantly improved over the last decades
[47, 52, 55, 65], the e�ect of many relevant factors on the ecological pattern formation, in
particular the role of the movement of individuals, remains poorly understood in spite of it
arguably being a key factor in spatial ecology [9, 61].

In our previous paper [20], we developed a 1D model of a population where individuals move
with density-dependence. Our aim was to relate the problem of understanding of population
spatial patterning to another major focus in ecology, namely, to the e�ect of di�erent individual
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movement patterns [76, 88, 93]. We therefore considered the spatial dynamics of a population
where animals perform either Brownian or non-Brownian density-dependent motion. In this
paper, the model of density-dependent movement has been extended to 2D spatial domains.
We have designed the formulation of the process of directed movement in a 2D domain: while
the size of a random jump is consistent between the 1D and 2D cases, the introduction of
an angle of movement in the 2D model inuences how directed movement works. Namely,
when the probability of directed movement is P = 0:5 in the 1D model, there is unbiased
random movement as there is an equal chance of an animal moving towards the area of higher
density. In the 2D model, having the probability P = 0:5 does not result in unbiased random
movement as the animal will move directly towards the area of highest density in 50% of
time steps and at any other angle the other 50%. Therefore, it is only the value P = 0 that
produces unbiased random movement in the 2D model. This makes it di�cult to compare the
results of the 1D and 2D models when changing P directly. Instead, in this paper we have
shown how the spatial distributions are dependent on P throughout the range of P 2 (0; 1).
We have also investigated how the spatial distributions depend on the perception radius R -
another parameter required to formulate rules of density-dependent movement in the model.

5.1. Brownian walkers
We concluded in our study in [20] that the formation of clusters in a population of Brownian

walkers would be similar in 1Dand2D models. Indeed, in the case of Brownian walkers and
assuming that the environment is isotropic, the ‘full’ 2D movement splits to a product of
two 1D movements for x and for y, i.e. � (�r) = � (�x) � (�y) where �r is the movement
step along the 2D path, (�r)2 = (�x)2 + (�y)2, and each of � (�x) and � (�y) is given by
(3). In this study we have con�rmed that density-dependent movement in 2D spatial domains
results in the formation of animal clusters and, exploring the changes in cluster properties
as the parameters change, we have found that the relationship between parameters and the
distribution is the same in 1D and 2D problems. The number of clusters formed in a 2D
domain is random although within a range that is dependent on the movement parameters,
particularly the perception radius R. When we set the area within the perception radius to
be the same proportion of the domain in the 2D model as the 1D model, the mean number
of clusters in 2D is 4:2, while in 1D the mean number of clusters is 4:56. In both studies,
increasing the perception radius led to fewer clusters. In both 1D and 2D cases, given that
P is su�ciently high then dense clusters were formed with few or no free individuals. Only
when P was very close to the value where the movement becomes unbiased (i.e. P � 0:52 in
1D, P � 0:01 in 2D) did the random movement not result in clusters. When P was such that
clusters did form they were always stable and although there were occasional changes in the
number of clusters, Brownian walkers never produced dynamic, rapidly uctuating clusters.

5.2. Non-Brownian walkers
The formation of clusters by a population of non-Brownian walkers in the 2D model was less

predictable having studied the results in 1D spatial domains. We found that indeed, clusters
were formed in the population of non-Browian walkers. Similarly to the 1D model, for the
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same parameter choice the properties of 2D clusters di�er signi�cantly between populations
of Brownian and non-Brownian walkers. The non-Brownian walkers produce fewer clusters
that are less dense and there are many more free individuals in the domain in comparison to
Brownian walkers with equivalent movement parameters.

It has been revealed in our 2D study that there are similarities between properties of clusters
formed by Brownian walkers with P < 0:1 and non-Brownian walkers with a value of P
approximately 10 times larger. This conclusion, however, does not hold for the stability of
clusters as Brownian walkers do not produce dynamic clusters for any P . Thus, the analysis
of spatial distributions alone may not be su�cient to conclude about the movement type: the
spatial distributions of Brownian walkers and non-Brownian walkers can be indistinguishable
when considering certain cluster properties but the spatio-temporal dynamics are still di�erent.

Another new feature of the 2D problem is that the clusters of non-Brownian walkers are
dynamic but only when P is su�ciently low. In our study of the 1D model, we concluded that
non-Brownian walkers produced dynamic clusters while Brownian walkers produced stable
clusters. However, by analysing the dynamics with varying values of P in the 2D model, we
have now found that 2D clusters produced by non-Brownian walkers are not always dynamic.

5.3. Summary of cluster dynamics in the 2D model
We have shown that the probability of directed movement, P , has a signi�cant e�ect on

the properties of clusters that arise from density dependent movement of both Brownian and
non-Brownian walkers. When P = 0, animals move independently of their conspeci�cs and
therefore the system will preserve an initial statistically uniform distribution for Brownian
and non-Brownian walkers. As P increases, at some point the system will shift so that a
distribution is produced that contains clusters. This will occur at a di�erent value of P
depending on the movement type. For non-Brownian walkers, clusters will begin to form at
P � 0:05 but for Brownian walkers this probability value will be much lower, P � 0:01.

When clusters are formed in a population of Brownian walkers, they are largely stable over
time (apart from occasional shifts when clusters merge), as shown in Fig. 21(a) with P = 0:02.
However, for clusters that are formed in a population of non-Brownian walkers with a low value
of P , the number of clusters is dynamic, as shown in Fig. 21(b) with P = 0:2. At some point
between P = 0:2 and P = 0:6 another shift occurs for non-Brownian walkers and the clusters
that are produced become stable, as seen in Fig. 13(a).

It is di�cult to study the exact points of transition when increasing P as it would involve
numerous simulations. We therefore cannot say for certain whether the shifts from the ‘no
clusters’ region in P to ‘dynamic clusters’ to ‘stable clusters’ happen suddenly, neither we can
determine the length of the transition state between the two. However, we can approximately
�nd the regions of di�erent dynamics by running multiple simulations with varying P . Fig. 22
shows the number of uctuations in the non-Brownian walkers case when P increases with the
increment 0:025. Between P = 0:05 and P = 0:175 we have a very high rate of uctuations
that starts decreasing as P increases. For P = 0:2 to P = 0:275 there are still a small number
of uctuations which then suddenly drops to almost no uctuations happening at P = 0:3 and
above. The results shown in the �gure do suggest a sharp shift in the dynamics, �rst from
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Figure 22: The rate of uctuations in the number of clusters between t = 4000 and t = 5000 in a
population of non-Brownian walkers when P increases from P = 0:025 to P = 0:6 with the increment
�P = 0:025. The populations in each simulation move according to a power law dispersal kernel (6)
and the movement parameters are R = 1,  = 2 and k = 0:0036. The frequencies are averaged over
three simulations for each value of P .

no clusters to highly dynamic clusters at P = 0:05 which then has a slow shift to moderately
dynamic clusters at P = 0:2 and another sharp shift to stable clusters at P = 0:3.

As discussed above, the number of clusters is dependent on our de�nition and choice of
threshold parameters and bin size. We chose parameters so that the properties of clusters
would not be sensitive to small changes in those parameters. However at transitions between
dynamics of the distributions the choice of parameters may have a greater e�ect. Further to
this, we have not formally de�ned what we mean by stable and dynamic clusters. It is clear
that Fig. 21(b) shows dynamic clusters but if the number of transitions was decreased there
must be a threshold at which point we would consider the system to no longer be showing
dynamic clusters and this issue requires further investigation.

Our plans for future work will be to utilise the generic model in a particular problem -
that of estimating the spatial distribution of a population that undergoes density-dependent
movement from a grid of animal traps. Speci�cally we will be �tting our parameters to
�eld data from the grey �eld slug Deroceras reticulatum who develop into patchy spatial
distributions [24, 70]. Understanding of the mechanisms underpinning the observed spatial and
temporal stability of slug patches through combination of numerical simulation and analysis
of �eld data will constitute a topic of future research.
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Appendices
Appendix A. Auxiliary parameters in the model

Appendix A.1. The number of segments
In our model, we split a spatial domain within the perception radius into a number of

segments to determine the direction of movement and we want to use the minimum number of
segments possible. If the number of segments is exceedingly large, population clusters within
the perception radius will be likely to be split up between several segments resulting in an
incorrect conclusion about the mean angle as the variable ms depends on S in (7). In addition,
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a b

Figure A.23: (a) the case where two clusters are contained within a single segment, (b) an illustration
of a segment where that the largest distance between any two points within the segment is equal to R.
The equilateral triangle shown for R = 1 has all angles equal to �=3.

increasing the number of segments is more computationally expensive as the population has
to be calculated for each segment within each animal’s perception radius. On the other hand,
if the number of segments is very small, we may have cases where two dense regions are
positioned within the same segment (see Fig A.23(a)) and the direction the individual will
move will be between the dense regions rather than towards either of them.

The minimum number of segments Smin required to control the directed movement in our
model can be de�ned under the requirement that, when clusters form, they will have a distance
between each other greater than the perception radius R (otherwise those areas are likely to
be drawn together and coalesce). For two areas of high density to be in the same perception
radius of an individual while not within the perception radius of each other, the minimum
angle �min between them from the location of the individual must be �min = �=3 radians;
see Fig A.23(b). Hence, the minimum number of segments to guarantee that two clusters do
not belong to the same segment is Smin = 2�=�min = 6 and we use the value of S = 6 in our
simulations (cf. [62] where the authors use the same number of six ‘neigbouring cells’ around
each animal in their simulation framework).

Let us emphasize that the number of segments is an auxiliary parameter introduced to help
us to avoid any ambiguity in the choice of the direction of movement as discussed above. While
any choice of S 6= 0 makes cluster formation more pronounced, S is not a critical parameter
in the model. Clusters will form even if we use no segments at all because the parameter S is
not present explicitly in the de�nition of the movement direction (7). The above statement is
illustrated in Fig. A.24(a), where we compare the number of clusters formed when 6 segments
are used in the model with that obtained in the model with no segments. As we can see from
the �gure, the di�erence between S = 6 and S = 0 is that, when we do not use segments, fewer
clusters are formed on average. The di�erence in the mean number of clusters is immediate,
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a b c

Figure A.24: (a) The mean number of clusters formed in 10 simulations over 5000 time steps when
S = 6 segments (solid red line) and no segments (solid blue line) are used in the model. (b, c)
Example distributions at t = 10000 of Brownian walkers with movement parameters P = 0:6, R = 1
and � = 0:02. (b) With 6 segments. (c) Without segments.

a b c d

Figure A.25: An illustration of how clusters may coalesce when inuenced by individuals that move
between clusters instead of towards them in a simulation without using segments. (a) A group of
individuals have animals from two di�erent clusters within their perception radius. They therefore
move approximately along the direction of the red dotted line, in between the clusters. The two clusters
are further than the perception radius apart. (b) As the free individuals move between the clusters, the
individuals within clusters are inuenced by the perception of the free individuals as they are within
the perception radius. Therefore, both clusters shift slightly towards the centre. (c) The small shift
in the position of the clusters has now put them within the perception radius of each other and they
continue to move towards the centre. (d) The clusters will eventually coalesce into one.

suggesting that this e�ect only happens in the �rst few time steps before clusters are fully
formed. This could be because, when we do not use segments, it is more likely that an animal
might move between two areas of high density rather than moving directly towards one if we
use (7) to determine the directed movement in cases like that shown in Fig. A.25. In our
opinion, such behaviour of an individual is an artefact of the model and it does not reect
biological traits of the population, hence we use the number of segments to alleviate that
e�ect.

Interestingly, once the clusters have formed, their properties are similar in both cases S 6= 0
and S = 0. From the formation of clusters in Fig. A.24(a) and the example distributions in
Fig. A.24(b)-(c) we can see that that there is very little di�erence in the spatial pattern of
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No Segments S = 4 S = 6 S = 12
Nc 22.5 25.5 24.9 25.5

(2.72) (1.58) (2.13) (1.96)
Ac � 10�2 1.51 1.39 1.42 1.35

(0.107) (0.0519) (0.0991) (0.0598)
nf 46.0 73.4 52.6 93.7

(25.0) (16.8) (26.6) (17.6)

Table A.12: The mean and standard deviation of properties of clusters that are formed by Brownian
walkers with di�erent values of S at t = 10000, with movement parameters P = 0:6, R = 1 and
� = 0:02. The legend is the same as in Table 1. The values in the table are taken over 10 simulations.

clusters produced or the time taken for the clusters to become ‘stable’. These conclusions are
further con�rmed by results in Table A.12.

The orientation of segments is �xed for all animals in our model. It is possible that using
randomly orientated segments for each time the angle of directed movement is calculated can
reduce the e�ect of ‘stretching’ we discuss in Section 4. Further study of this problem is
outside the scope of this paper but we believe that there would be no signi�cant impact on
the cluster properties that are key to our analysis.

Appendix A.2. The number of bins
The de�nition of a cluster that we have described in Section 2.2 requires splitting the domain

into a certain number of bins. The number of bins used will have an e�ect on the cluster
properties and we therefore want to examine how those properties change as we change the
number of bins. Let us consider the cluster sizes when modelling with the normal distribution
dispersal kernel. Table A.13 shows the cluster properties calculated using varying bin sizes.
When the number of bins is 202 or higher, we have a constant number of clusters but the
mean cluster area decreases and the number of free individuals increases as the number of
bins increases. As this choice of parameters leads to dense clusters (see Fig. 6(d)), it is likely
that all free individuals are very close to a cluster. When there is a large number of bins, it is
more likely that these individuals will not be included as within a cluster because they occupy
a bin that is slightly below the threshold.

In Fig. 3, we can see how the attributes of the clusters converge as we increase the number
of bins. The number of clusters converges to a stable number for a number of bins just below
20x20 and the mean cluster population converges slightly earlier than that. In the case of a
typical distribution generated by non-Brownian motion, shown in Fig. 5, the cluster properties
shown in Fig. A.26 converge in a similar way but with some slight uctuations to the number
of clusters.

In deciding an appropriate bin size, it may be useful to analyse the distances between
individuals in the �eld. The nearest neighbour method is a commonly used method in spatial
analysis in ecology [25] and otherwise [5] where the mean and variance of the distances between
a point and it’s nearest individual are calculated. We can do a similar analysis and �nd the
distance between every possible pair of individuals to show the spatial scales between and
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102 202 302 502 1002

Nc 21.8 24.9 24.9 24.9 24.9
(1.87) (2.13) (2.13) (2.13) (2.13)

Ac � 10�2 5.82 1.42 1.33 1.20 0.922
(4.31) (0.0991) (0.0726) (0.0704) (0.0689)

nf 33.2 52.6 108 216 470
(14.5) (16.5) (30.4) (37.7) (80.7)

Table A.13: The mean and standard deviation of properties of clusters that are formed by Brownian
walkers with movement parameters P = 0:6, R = 1 and � = 0:02, calculated using a di�erent number
of bins. The values in the table are taken over 10 simulations.

a b

Figure A.26: The cluster properties of a distribution of non-Brownian walkers as shown in the distribution in
Fig. 5 when changing the number of bins.

within clusters. We calculate the distances for the distributions as shown in Fig. 4 and
Fig. A.27 shows the frequency with which di�erent distances occur. Fig. A.27(a) shows a
large amount of pairs have a distance close to 0, suggesting that those pairs are in the same
cluster. Very few have a distance of length close to 1 and then the distance between pairs that
are not in a cluster ranges from roughly 1.5 to 11.

Fig. A.27(b) shows the spike close to 0 in more detail. The distribution peaks at around
0.02 before decreasing to a level where there are only 10 distances measured between 0.15 and
0.2 and none at all between 0.2 and 1.1. This tells us that the diameter of the clusters are all
less than 0.2 and also shows that clusters cannot be within a distance of 1 from each other,
due to the perception radius R. The scales of distances within and between clusters can also
explain the regions of stability in Fig. 3. We can see that the number of clusters and mean
cluster population and area have a large shift between 5 and 15 bins, when the bin size is
between 2 and 0.6, which the region where the minimum distance between clusters occurs.

The results are not so clear for the non-Brownian distribution as shown in Fig. A.27(c)-(d).
Because of the amount of free individuals we do not have a range where no distances between
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individuals occur. Fig. A.27(d) shows the minimum point in the distribution of distances is
roughly 1.2 but, depending on our bin size, most of the distances in the region of 0.5 and 1.5
will be made up of distances where at least one of the individuals is free.

A grid of bins that would be sensible for both distributions would have to have bin sizes
that are in the region [0:1; 0:5] for the Brownian distribution. This is the region [0:2; 1] halved
as two neighbouring bins can make up part of the same cluster and so the distance over two
bins should be restricted to this region. The non-Brownian case may require a slightly more
restrictive region [0:2; 0:5] but the results do not tell us as much as the Brownian distribution
case.

Overall, from studying two example distributions generated from a random walk using either
the normal distribution or the power law to generate the step size, we have enough information

a b

c d

Figure A.27: The frequencies of distances between individuals in the population distribution. The
distance between every individual is calculated, giving 10002 data points. (a)-(b) Brownian walkers;
see the distribution in Fig. 4(a) shows all distances, (b) shows the distances close to 0, i.e. for
individuals within a cluster. (c)-(d) non-Brownian walkers; see the distribution in Fig. 5 (c) shows
all distances, (d) shows the distances between 0 and 2, i.e. the area where pairs can be within a
cluster, in neighbouring clusters or with individuals outside clusters.
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to justify a choice of the number of bins in the grid. In the Brownian case the properties of
clusters are less sensitive to the change of bins than in the non-Brownian case but in both
there is a region starting at slightly fewer than a grid of 20x20 bins, where there are not
signi�cant changes. Taking all the above information into account, we believe a 20x20 grid of
bins is su�cient for analysing the properties of clusters.
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