Variation of Trelaxation times in pediatric brain tumors and their effect on metabolite quantification

Research output: Contribution to journalArticlepeer-review

Standard

Harvard

APA

Vancouver

Author

Bibtex

@article{30aed6bc49ef475fa239fb67c14e93d2,
title = "Variation of T2 relaxation times in pediatric brain tumors and their effect on metabolite quantification",
abstract = "Background Metabolite concentrations are fundamental biomarkers of disease and prognosis. Magnetic resonance spectroscopy (MRS) is a noninvasive method for measuring metabolite concentrations; however, quantitation is affected by T2 relaxation. Purpose To estimate T2 relaxation times in pediatric brain tumors and assess how variation in T2 relaxation affects metabolite quantification. Study Type Retrospective. Population Twenty‐seven pediatric brain tumor patients (n = 17 pilocytic astrocytoma and n = 10 medulloblastoma) and 24 age‐matched normal controls. Field Strength/Sequence Short‐ (30 msec) and long‐echo (135 msec) single‐voxel MRS acquired at 1.5T. Assessment T2 relaxation times were estimated by fitting signal amplitudes at two echo times to a monoexponential decay function and were used to correct metabolite concentration estimates for relaxation effects. Statistical Tests One‐way analysis of variance (ANOVA) on ranks were used to analyze the mean T2 relaxation times and metabolite concentrations for each tissue group and paired Mann–Whitney U‐tests were performed. Results The mean T2 relaxation of water was measured as 181 msec, 123 msec, 90 msec, and 86 msec in pilocytic astrocytomas, medulloblastomas, basal ganglia, and white matter, respectively. The T2 of water was significantly longer in both tumor groups than normal brain (P < 0.001) and in pilocytic astrocytomas compared with medulloblastomas (P < 0.01). The choline T2 relaxation time was significantly longer in medulloblastomas compared with pilocytic astrocytomas (P < 0.05), while the T2 relaxation time of NAA was significantly shorter in pilocytic astrocytomas compared with normal brain (P < 0.001). Overall, the metabolite concentrations were underestimated by ∼22% when default T2 values were used compared with case‐specific T2 values at short echo time. The difference was reduced to 4% when individually measured water T2s were used. Data Conclusion Differences exist in water and metabolite T2 relaxation times for pediatric brain tumors, which lead to significant underestimation of metabolite concentrations when using default water T2 relaxation times.",
author = "Dominic Carlin and Ben Babourina-brooks and Davies, {Nigel P.} and Martin Wilson and Peet, {Andrew C.}",
year = "2018",
month = apr,
day = "26",
doi = "10.1002/jmri.26054",
language = "English",
journal = "Journal of Magnetic Resonance Imaging",
issn = "1053-1807",
publisher = "Wiley",

}

RIS

TY - JOUR

T1 - Variation of T2 relaxation times in pediatric brain tumors and their effect on metabolite quantification

AU - Carlin, Dominic

AU - Babourina-brooks, Ben

AU - Davies, Nigel P.

AU - Wilson, Martin

AU - Peet, Andrew C.

PY - 2018/4/26

Y1 - 2018/4/26

N2 - Background Metabolite concentrations are fundamental biomarkers of disease and prognosis. Magnetic resonance spectroscopy (MRS) is a noninvasive method for measuring metabolite concentrations; however, quantitation is affected by T2 relaxation. Purpose To estimate T2 relaxation times in pediatric brain tumors and assess how variation in T2 relaxation affects metabolite quantification. Study Type Retrospective. Population Twenty‐seven pediatric brain tumor patients (n = 17 pilocytic astrocytoma and n = 10 medulloblastoma) and 24 age‐matched normal controls. Field Strength/Sequence Short‐ (30 msec) and long‐echo (135 msec) single‐voxel MRS acquired at 1.5T. Assessment T2 relaxation times were estimated by fitting signal amplitudes at two echo times to a monoexponential decay function and were used to correct metabolite concentration estimates for relaxation effects. Statistical Tests One‐way analysis of variance (ANOVA) on ranks were used to analyze the mean T2 relaxation times and metabolite concentrations for each tissue group and paired Mann–Whitney U‐tests were performed. Results The mean T2 relaxation of water was measured as 181 msec, 123 msec, 90 msec, and 86 msec in pilocytic astrocytomas, medulloblastomas, basal ganglia, and white matter, respectively. The T2 of water was significantly longer in both tumor groups than normal brain (P < 0.001) and in pilocytic astrocytomas compared with medulloblastomas (P < 0.01). The choline T2 relaxation time was significantly longer in medulloblastomas compared with pilocytic astrocytomas (P < 0.05), while the T2 relaxation time of NAA was significantly shorter in pilocytic astrocytomas compared with normal brain (P < 0.001). Overall, the metabolite concentrations were underestimated by ∼22% when default T2 values were used compared with case‐specific T2 values at short echo time. The difference was reduced to 4% when individually measured water T2s were used. Data Conclusion Differences exist in water and metabolite T2 relaxation times for pediatric brain tumors, which lead to significant underestimation of metabolite concentrations when using default water T2 relaxation times.

AB - Background Metabolite concentrations are fundamental biomarkers of disease and prognosis. Magnetic resonance spectroscopy (MRS) is a noninvasive method for measuring metabolite concentrations; however, quantitation is affected by T2 relaxation. Purpose To estimate T2 relaxation times in pediatric brain tumors and assess how variation in T2 relaxation affects metabolite quantification. Study Type Retrospective. Population Twenty‐seven pediatric brain tumor patients (n = 17 pilocytic astrocytoma and n = 10 medulloblastoma) and 24 age‐matched normal controls. Field Strength/Sequence Short‐ (30 msec) and long‐echo (135 msec) single‐voxel MRS acquired at 1.5T. Assessment T2 relaxation times were estimated by fitting signal amplitudes at two echo times to a monoexponential decay function and were used to correct metabolite concentration estimates for relaxation effects. Statistical Tests One‐way analysis of variance (ANOVA) on ranks were used to analyze the mean T2 relaxation times and metabolite concentrations for each tissue group and paired Mann–Whitney U‐tests were performed. Results The mean T2 relaxation of water was measured as 181 msec, 123 msec, 90 msec, and 86 msec in pilocytic astrocytomas, medulloblastomas, basal ganglia, and white matter, respectively. The T2 of water was significantly longer in both tumor groups than normal brain (P < 0.001) and in pilocytic astrocytomas compared with medulloblastomas (P < 0.01). The choline T2 relaxation time was significantly longer in medulloblastomas compared with pilocytic astrocytomas (P < 0.05), while the T2 relaxation time of NAA was significantly shorter in pilocytic astrocytomas compared with normal brain (P < 0.001). Overall, the metabolite concentrations were underestimated by ∼22% when default T2 values were used compared with case‐specific T2 values at short echo time. The difference was reduced to 4% when individually measured water T2s were used. Data Conclusion Differences exist in water and metabolite T2 relaxation times for pediatric brain tumors, which lead to significant underestimation of metabolite concentrations when using default water T2 relaxation times.

U2 - 10.1002/jmri.26054

DO - 10.1002/jmri.26054

M3 - Article

JO - Journal of Magnetic Resonance Imaging

JF - Journal of Magnetic Resonance Imaging

SN - 1053-1807

ER -