Uterotonic agents for preventing postpartum haemorrhage: a network meta-analysis

Research output: Contribution to journalArticlepeer-review

Authors

  • Abi Merriel
  • Vidhya Moorthy
  • Aurelio Tobias
  • Jon Deeks
  • Mariana Widmer
  • Özge Tunçalp
  • Ahmet Metin Gülmezoglu
  • G Justus Hofmeyr
  • Arri Coomarasamy

External organisations

  • University of Birmingham; School of Health and Population Sciences; Birmingham UK B15 2TG
  • University of Bristol; Bristol Medical School; Department of Women's and Children's Health The Chilterns Southmead Hospital UK BS10 5NB
  • 20 St Agnes Road Moseley Birmingham UK B13 9PW
  • Sandwell and West Birmingham NHS Trust; Department of Obstetrics and Gynaecology; City Hospital Dudley Road Birmingham UK B18 7QH
  • University of Birmingham Institute of Applied Health Research Room 124, Learning Centre Edgbaston, Birmingham West Midlands B15 2TT.
  • World Health Organization; UNDP/UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction (HRP), Department of Reproductive Health and Research; 20 Avenue Appia Geneva Switzerland 1211
  • Walter Sisulu University, University of the Witwatersrand, Eastern Cape Department of Health; East London South Africa
  • University of Birmingham; Tommy’s National Centre for Miscarriage Research, Institute of Metabolism and Systems Research; C/o Academic Unit, 3rd Floor, Birmingham Women's Hospital Foundation Trust Mindelsohn Way Birmingham UK B15 2TG

Abstract

Background
Postpartum haemorrhage (PPH) is the leading cause of maternal mortality worldwide. Prophylactic uterotonic drugs can prevent PPH, and are routinely recommended. There are several uterotonic drugs for preventing PPH but it is still debatable which drug is best.

Objectives
To identify the most effective uterotonic drug(s) to prevent PPH, and generate a ranking according to their effectiveness and side-effect profile.

Search methods
We searched Cochrane Pregnancy and Childbirth’s Trials Register (1 June 2015), ClinicalTrials.gov and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) for unpublished trial reports (30 June 2015) and reference lists of retrieved studies.

Selection criteria
All randomised controlled comparisons or cluster trials of effectiveness or side-effects of uterotonic drugs for preventing PPH.

Quasi-randomised trials and cross-over trials are not eligible for inclusion in this review.

Data collection and analysis
At least three review authors independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. We estimated the relative effects and rankings for preventing PPH ≥ 500 mL and PPH ≥ 1000 mL as primary outcomes. We performed pairwise meta-analyses and network meta-analysis to determine the relative effects and rankings of all available drugs. We stratified our primary outcomes according to mode of birth, prior risk of PPH, healthcare setting, dosage, regimen and route of drug administration, to detect subgroup effects.The absolute risks in the oxytocin are based on meta-analyses of proportions from the studies included in this review and the risks in the intervention groups were based on the assumed risk in the oxytocin group and the relative effects of the interventions.

Main results
This network meta-analysis included 140 randomised trials with data from 88,947 women. There are two large ongoing studies. The trials were mostly carried out in hospital settings and recruited women who were predominantly more than 37 weeks of gestation having a vaginal birth. The majority of trials were assessed to have uncertain risk of bias due to poor reporting of study design. This primarily impacted on our confidence in comparisons involving carbetocin trials more than other uterotonics.

The three most effective drugs for prevention of PPH ≥ 500 mL were ergometrine plus oxytocin combination, carbetocin, and misoprostol plus oxytocin combination. These three options were more effective at preventing PPH ≥ 500 mL compared with oxytocin, the drug currently recommended by the WHO (ergometrine plus oxytocin risk ratio (RR) 0.69 (95% confidence interval (CI) 0.57 to 0.83), moderate-quality evidence; carbetocin RR 0.72 (95% CI 0.52 to 1.00), very low-quality evidence; misoprostol plus oxytocin RR 0.73 (95% CI 0.60 to 0.90), moderate-quality evidence). Based on these results, about 10.5% women given oxytocin would experience a PPH of ≥ 500 mL compared with 7.2% given ergometrine plus oxytocin combination, 7.6% given carbetocin, and 7.7% given misoprostol plus oxytocin. Oxytocin was ranked fourth with close to 0% cumulative probability of being ranked in the top three for PPH ≥ 500 mL.

The outcomes and rankings for the outcome of PPH ≥ 1000 mL were similar to those of PPH ≥ 500 mL. with the evidence for ergometrine plus oxytocin combination being more effective than oxytocin (RR 0.77 (95% CI 0.61 to 0.95), high-quality evidence) being more certain than that for carbetocin (RR 0.70 (95% CI 0.38 to 1.28), low-quality evidence), or misoprostol plus oxytocin combination (RR 0.90 (95% CI 0.72 to 1.14), moderate-quality evidence)

There were no meaningful differences between all drugs for maternal deaths or severe morbidity as these outcomes were so rare in the included randomised trials.

Two combination regimens had the poorest rankings for side-effects. Specifically, the ergometrine plus oxytocin combination had the higher risk for vomiting (RR 3.10 (95% CI 2.11 to 4.56), high-quality evidence; 1.9% versus 0.6%) and hypertension [RR 1.77 (95% CI 0.55 to 5.66), low-quality evidence; 1.2% versus 0.7%), while the misoprostol plus oxytocin combination had the higher risk for fever (RR 3.18 (95% CI 2.22 to 4.55), moderate-quality evidence; 11.4% versus 3.6%) when compared with oxytocin. Carbetocin had similar risk for side-effects compared with oxytocin although the quality evidence was very low for vomiting and for fever, and was low for hypertension.

Authors' conclusions
Ergometrine plus oxytocin combination, carbetocin, and misoprostol plus oxytocin combination were more effective for preventing PPH ≥ 500 mL than the current standard oxytocin. Ergometrine plus oxytocin combination was more effective for preventing PPH ≥ 1000 mL than oxytocin. Misoprostol plus oxytocin combination evidence is less consistent and may relate to different routes and doses of misoprostol used in the studies. Carbetocin had the most favourable side-effect profile amongst the top three options; however, most carbetocin trials were small and at high risk of bias.

Amongst the 11 ongoing studies listed in this review there are two key studies that will inform a future update of this review. The first is a WHO-led multi-centre study comparing the effectiveness of a room temperature stable carbetocin versus oxytocin (administered intramuscularly) for preventing PPH in women having a vaginal birth. The trial includes around 30,000 women from 10 countries. The other is a UK-based trial recruiting more than 6000 women to a three-arm trial comparing carbetocin, oxytocin and ergometrine plus oxytocin combination. Both trials are expected to report in 2018.

Consultation with our consumer group demonstrated the need for more research into PPH outcomes identified as priorities for women and their families, such as women’s views regarding the drugs used, clinical signs of excessive blood loss, neonatal unit admissions and breastfeeding at discharge. To date, trials have rarely investigated these outcomes. Consumers also considered the side-effects of uterotonic drugs to be important but these were often not reported. A forthcoming set of core outcomes relating to PPH will identify outcomes to prioritise in trial reporting and will inform futures updates of this review. We urge all trialists to consider measuring these outcomes for each drug in all future randomised trials. Lastly, future evidence synthesis research could compare the effects of different dosages and routes of administration for the most effective drugs.
This study synthesised evidence from 200 randomised trials comparing seven uterotonic agents that can be used to prevent postpartum haemorrhage. The results suggested that three uterotonic agents, including the heat-stable carbetocin, were more effective than oxytocin, the agent currently recommended by the World Health Organization. The World Health Organization made a recommendation for the use of carbetocin for all births where oxytocin is not available and included carbetocin in the WHO Model List of Essential Medicines based on the evidence from this study. 25 citations (Web of Science, Jan 2020)

Bibliographic note

This output includes data on cost-effectiveness, and affordability of heat-stable carbetocin. The results show that carbetocin is more cost-effective for developed countries where the cost of PPH is high. Carbetocin is also affordable for low- and middle-income countries in view of an agreement of Ferring Pharmaceuticals and Merck with WHO to make heat-stable carbetocin available in “public sector facilities of high-burden countries at an affordable and sustainable price”. 3 citations (Web of Science, Jan 2020)

Details

Original languageEnglish
Article numberCD011689
Number of pages314
JournalCochrane Database of Systematic Reviews
Volume2018
Issue number4
Publication statusPublished - 25 Apr 2018