Universal cardiac induction of human pluripotent stem cells in two and three-dimensional formats: implications for in vitro maturation

Research output: Contribution to journalArticle


  • Miao Zhang
  • Jan Sebastian Schulte
  • Alexander Heinick
  • Ilaria Piccini
  • Jyoti Rao
  • Roberto Quaranta
  • Dagmar Zeuschner
  • Daniela Malan
  • Kee-Pyo Kim
  • Albrecht Röpke
  • Philipp Sasse
  • Marcos Araúzo-Bravo
  • Guiscard Seebohm
  • Hans Schöler
  • Frank Ulrich Müller
  • Boris Greber

Colleges, School and Institutes


Directed cardiac differentiation of human pluripotent stem cells (hPSCs) enables disease modeling, investigation of human cardiogenesis, as well as large-scale production of cardiomyocytes (CMs) for translational purposes. Multiple CM differentiation protocols have been developed to individually address specific requirements of these diverse applications, such as enhanced purity at a small scale or mass production at a larger scale. However, there is no universal high-efficiency procedure for generating CMs both in two-dimensional (2D) and three-dimensional (3D) culture formats, and undefined or complex media additives compromise functional analysis or cost-efficient upscaling. Using systematic combinatorial optimization, we have narrowed down the key requirements for efficient cardiac induction of hPSCs. This implied differentiation in simple serum and serum albumin-free basal media, mediated by a minimal set of signaling pathway manipulations at moderate factor concentrations. The method was applicable both to 2D and 3D culture formats as well as to independent hPSC lines. Global time-course gene expression analyses over extended time periods and in comparison with human heart tissue were used to monitor culture-induced maturation of the resulting CMs. This suggested that hPSC-CMs obtained with our procedure reach a rather stable transcriptomic state after approximately 4 weeks of culture. The underlying gene expression changes correlated well with a decline of immature characteristics as well as with a gain of structural and physiological maturation features within this time frame. These data link gene expression patterns of hPSC-CMs to functional readouts and thus define the cornerstones of culture-induced maturation.


Original languageEnglish
Pages (from-to)1456-69
Number of pages14
JournalStem Cells
Issue number5
Early online date31 Jan 2015
Publication statusPublished - May 2015


  • cardiac differentiation, human pluripotent stem cells, in-vitro maturation