Ultraviolet photolysis of HCHO: Absolute HCO quantum yields by direct detection of the HCO radical photoproduct

Research output: Contribution to journalArticle

Authors

  • PG Carbajo
  • SC Smith
  • A-L Holloway
  • CA Smith
  • DE Shallcross
  • AJ Orr-Ewing

Colleges, School and Institutes

Abstract

Absolute quantum yields for the radical (H + HCO) channel of HCHO photolysis, Phi(HCO), have been measured for the tropospherically relevant range of wavelengths (lambda) between 300 and 330 nm. The HCO photoproduct was directly detected by using a custom-built, combined ultra-violet (UV) absorption and cavity ring down (CRD) detection spectrometer. This instrument was previously employed for high-resolution (spectral resolution approximately 0.0035 nm) measurements of absorption cross-sections of HCHO, sigma(HCHO)(lambda), and relative HCO quantum yields. Absolute Phi(HCO) values were measured at seven wavelengths, lambda = 303.70, 305.13, 308.87, 314.31, 320.67, 325.59, and 329.51 nm, using an independent calibration technique based on the simultaneous UV photolysis of HCHO and Cl(2). These Phi(HCO) measurements display greater variability as a function of wavelength than the current NASA-JPL recommendations for Phi(HCO). The absolute Phi(HCO)(lambda) determinations and previously measured sigma(HCHO)(lambda) were used to scale an extensive set of relative HCO yield measurements. The outcome of this procedure is a full suite of data for the product of the absolute radical quantum yield and HCHO absorption cross-section, Phi(HCO)(lambda)sigma(HCHO)(lambda), at wavelengths from 302.6 to 331.0 nm with a wavelength resolution of 0.005 nm. This product of photochemical parameters is combined with high-resolution solar photon flux data to calculate the integrated photolysis rate of HCHO to the radical (H + HCO) channel, J(HCO). Comparison with the latest NASA-JPL recommendations, reported at 1 nm wavelength resolution, suggests an increased J(HCO) of 25% at 0 degrees solar zenith angle (SZA) increasing to 33% at high SZA (80 degrees). The differences in the calculated photolysis rate compared with the current HCHO data arise, in part, from the higher wavelength resolution of the current data set and highlight the importance of using high-resolution spectroscopic techniques to achieve a complete and accurate picture of HCHO photodissociation processes. All experimental Phi(HCO)(lambda)sigma(HCHO)(lambda) data are available for the wavelength range 302.6-331.0 nm (at 294 and 245 K and under 200 Torr of N(2) bath gas) as Supporting Information with wavelength resolutions of 0.005, 0.1, and 1.0 nm. Equivalent data sets of Phi(H(2)+CO)(lambda)sigma(HCHO)(lambda) for the molecular (H(2) + CO) photofragmentation channel, produced using the measured Phi(HCO)(lambda) sigma(HCHO)(tau) values, are also provided at 0.1 and 1.0 nm resolution.

Details

Original languageEnglish
Pages (from-to)12437
Number of pages1
JournalThe Journal of Physical Chemistry A
Volume112
Publication statusPublished - 1 Jan 2008