Twisting fatigue in multilayer films of Ag-alloy with indium tin oxide on polyethylene terephthalate for flexible electronics devices

Research output: Contribution to journalArticle

Standard

Twisting fatigue in multilayer films of Ag-alloy with indium tin oxide on polyethylene terephthalate for flexible electronics devices. / Kukureka, Stephen; Mohammed, Dilveen; Mohammed Ameen, Rayan.

In: Thin Solid Films, Vol. 645, 01.01.2018, p. 241-252.

Research output: Contribution to journalArticle

Harvard

APA

Vancouver

Author

Bibtex

@article{fcca089d93ce41209c6997f41e2359fb,
title = "Twisting fatigue in multilayer films of Ag-alloy with indium tin oxide on polyethylene terephthalate for flexible electronics devices",
abstract = "Twisting monotonic and fatigue experiments were conducted on multi-layered films of Ag-alloy based indium tin oxide (ITO) deposited on polyethylene terephthalate (PET). In the twisting tests, crack development and electrical resistance were monitored in situ. Cracks initiated at an angle of 39° ± 1.7° and propagated towards the direction of the sample length. Two sets of experiments were performed; the first set of experiments was conducted to study the effect of twisting angle and temperature on the film's electromechanical performance. The other set of experiments was conducted to study the effect of temperature in the absence of cyclic twisting deformation. The change in electrical resistance increased with number of twisting cycles and twisting angle. In addition, the highest change in electrical resistance was observed for samples subjected to cyclic fatigue at 100 °C, which is attributed to crack growth and oxidation of the Ag-alloy layer. The cracks were observed to initiate not only from coating defects but also from edge defects. Development of cracks is accelerated due to the combined effects of the external repeated stress and temperature. Therefore, it is suggested that controlling temperature when using ITO/Ag-alloy/ITO thin film under mechanical stress is important for electrical device performance; temperatures in both fabrication and use should not exceed 50 °C.",
author = "Stephen Kukureka and Dilveen Mohammed and {Mohammed Ameen}, Rayan",
year = "2018",
month = jan
day = "1",
doi = "10.1016/j.tsf.2017.10.047",
language = "English",
volume = "645",
pages = "241--252",
journal = "Thin Solid Films",
issn = "0040-6090",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Twisting fatigue in multilayer films of Ag-alloy with indium tin oxide on polyethylene terephthalate for flexible electronics devices

AU - Kukureka, Stephen

AU - Mohammed, Dilveen

AU - Mohammed Ameen, Rayan

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Twisting monotonic and fatigue experiments were conducted on multi-layered films of Ag-alloy based indium tin oxide (ITO) deposited on polyethylene terephthalate (PET). In the twisting tests, crack development and electrical resistance were monitored in situ. Cracks initiated at an angle of 39° ± 1.7° and propagated towards the direction of the sample length. Two sets of experiments were performed; the first set of experiments was conducted to study the effect of twisting angle and temperature on the film's electromechanical performance. The other set of experiments was conducted to study the effect of temperature in the absence of cyclic twisting deformation. The change in electrical resistance increased with number of twisting cycles and twisting angle. In addition, the highest change in electrical resistance was observed for samples subjected to cyclic fatigue at 100 °C, which is attributed to crack growth and oxidation of the Ag-alloy layer. The cracks were observed to initiate not only from coating defects but also from edge defects. Development of cracks is accelerated due to the combined effects of the external repeated stress and temperature. Therefore, it is suggested that controlling temperature when using ITO/Ag-alloy/ITO thin film under mechanical stress is important for electrical device performance; temperatures in both fabrication and use should not exceed 50 °C.

AB - Twisting monotonic and fatigue experiments were conducted on multi-layered films of Ag-alloy based indium tin oxide (ITO) deposited on polyethylene terephthalate (PET). In the twisting tests, crack development and electrical resistance were monitored in situ. Cracks initiated at an angle of 39° ± 1.7° and propagated towards the direction of the sample length. Two sets of experiments were performed; the first set of experiments was conducted to study the effect of twisting angle and temperature on the film's electromechanical performance. The other set of experiments was conducted to study the effect of temperature in the absence of cyclic twisting deformation. The change in electrical resistance increased with number of twisting cycles and twisting angle. In addition, the highest change in electrical resistance was observed for samples subjected to cyclic fatigue at 100 °C, which is attributed to crack growth and oxidation of the Ag-alloy layer. The cracks were observed to initiate not only from coating defects but also from edge defects. Development of cracks is accelerated due to the combined effects of the external repeated stress and temperature. Therefore, it is suggested that controlling temperature when using ITO/Ag-alloy/ITO thin film under mechanical stress is important for electrical device performance; temperatures in both fabrication and use should not exceed 50 °C.

U2 - 10.1016/j.tsf.2017.10.047

DO - 10.1016/j.tsf.2017.10.047

M3 - Article

VL - 645

SP - 241

EP - 252

JO - Thin Solid Films

JF - Thin Solid Films

SN - 0040-6090

ER -