Transgenerational response to early spring warming in Daphnia

Research output: Contribution to journalArticle

Colleges, School and Institutes

Abstract

Temperature and photoperiod regulate key fitness traits in plants and animals. However, with temperature increase due to global warming, temperature cue thresholds are experienced at shorter photoperiods, disrupting the optimal seasonal timing of physiological, developmental and reproductive events in many species. Understanding the mechanisms of adaptation to the asynchrony between temperature and photoperiod is key to inform our understanding of how species will respond to global warming.
Here, we studied the transgenerational mechanisms of responses of the cyclical parthenogen Daphnia magna to different photoperiod lengths co-occurring with warm temperature thereby assessing the impact of earlier spring warming on its fitness. Daphnia uses temperature and photoperiod cues to time dormancy, and to switch between sexual and asexual reproduction. Daphnia life cycle offers the opportunity to measure the relative contribution of plastic and genetic responses to environmental change across generations and over evolutionary time. We use transgenerational common garden experiments on three populations ‘resurrected’ from a biological archive experiencing temperature increase over five decades. Our results suggest that response to early spring warming evolved underpinned by a complex interaction between plastic and genetic mechanisms while a positive maternal contribution at matching environments between parental and offspring generation was also observed.

Details

Original languageEnglish
Article number4449
JournalScientific Reports
Volume9
Issue number1
Early online date14 Mar 2019
Publication statusPublished - 14 Mar 2019

Keywords

  • phenotypic plasticity, genetic adaptation, transgenerational plasticity, candidate genes, resurrection ecology, water flea

ASJC Scopus subject areas