Transcription start sites downstream of the Epstein-Barr virus (EBV) Fp promoter in early-passage Burkitt lymphoma cells define a fourth promoter for expression of the EBV EBNA-1 protein

C Nonkwelo, J Skinner, A Bell, A Rickinson, J Sample

Research output: Contribution to journalArticlepeer-review

114 Citations (Scopus)

Abstract

In Epstein-Barr virus (EBV)-transformed B lymphoblastoid and many Burkitt lymphoma cell lines, the EBV EBNA-1 protein is one of six viral nuclear antigens expressed from a common transcription unit under the control of one of two promoters, Wp or Cp. In contrast, EBNA-1 is the only EBV nuclear antigen expressed in Burkitt and other EBV-positive tumors. We previously identified a promoter of EBNA-1 transcription, designated Fp, in early-passage Mutu Burkitt tumor cells, and this promoter is also active in long-term Mutu and Akata Burkitt cell lines which maintain the exclusive expression of EBNA-1 characteristic of the tumor. However, transcription initiation within Fp reporter gene plasmids in EBV-negative cells occurs at positions 100 to 200 bases downstream of the Fp start site in the BamHI-Q restriction fragment. Here we demonstrate that transcription initiation within newly established Burkitt lymphoma cell lines is consistent with the transcription initiation we observed in reporter plasmids. Furthermore, previous observations of transcription from Fp to generate EBNA-1 transcripts can be attributed to lytic-cycle gene expression. These data, in conjunction with our previous characterization of promoter regulatory elements, define a fourth EBNA-1 promoter, Qp, that is active in latently infected Burkitt tumor cells.
Original languageEnglish
Pages (from-to)623-7
Number of pages5
JournalJournal of virology
Volume70
Issue number1
Publication statusPublished - 1996

Fingerprint

Dive into the research topics of 'Transcription start sites downstream of the Epstein-Barr virus (EBV) Fp promoter in early-passage Burkitt lymphoma cells define a fourth promoter for expression of the EBV EBNA-1 protein'. Together they form a unique fingerprint.

Cite this