Therapeutic targeting of cathepsin C: from pathophysiology to treatment

Research output: Contribution to journalArticlepeer-review


  • Brice Korkmaz
  • George H. Caughey
  • Francis Gauthier
  • Dieter E. Jenne
  • Ralph Kettritz
  • Gilles Lalmanach
  • Anne-Sophie Lamort
  • Conni Lauritzen
  • Monika Łȩgowska
  • Adam Lesner
  • Sylvain Marchand-Adam
  • Sarah J. McKaig
  • Celia Moss
  • John Pedersen
  • Helen Roberts
  • Adrian Schreiber
  • Seda Seren
  • Nalin S. Thakker

Colleges, School and Institutes


Cathepsin C (CatC) is a highly conserved tetrameric lysosomal cysteine dipeptidyl aminopeptidase. The best characterized physiological function of CatC is the activation of pro-inflammatory granule-associated serine proteases. These proteases are synthesized as inactive zymogens containing an N-terminal pro-dipeptide, which maintains the zymogen in its inactive conformation and prevents premature activation, which is potentially toxic to the cell. The activation of serine protease zymogens occurs through cleavage of the N-terminal dipeptide by CatC during cell maturation in the bone marrow. In vivo data suggest that pharmacological inhibition of pro-inflammatory serine proteases would suppress or attenuate deleterious effects mediated by these proteases in inflammatory/auto-immune disorders. The pathological deficiency in CatC is associated with Papillon-Lefèvre syndrome (PLS). The patients however do not present marked immunodeficiency despite the absence of active serine proteases in immune defense cells. Hence, the transitory pharmacological blockade of CatC activity in the precursor cells of the bone marrow may represent an attractive therapeutic strategy to regulate activity of serine proteases in inflammatory and immunologic conditions. A variety of CatC inhibitors have been developed both by pharmaceutical companies and academic investigators, some of which are currently being employed and evaluated in preclinical/clinical trials.


Original languageEnglish
Pages (from-to)202-236
JournalPharmacology & Therapeutics
Early online date26 May 2018
Publication statusPublished - 1 Oct 2018


  • Cathepsin C, Serine proteases, Elastease, Proteinase 3, Papillon-Lefèvre syndrome, inflammatory/autoimmune diseases, therapeutic inhibitors, pharmacological targeting