The XXL Survey: VIII. MUSE characterisation of intracluster light in a z ∼ 0.53 cluster of galaxies

C. Adami, E. Pompei, T. Sadibekova, N. Clerc, A. Iovino, S.L. McGee, L. Guennou, M. Birkinshaw, C. Horellou, S. Maurogordato, F. Pacaud, M. Pierre, B. Poggianti, J. Willis

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)
56 Downloads (Pure)

Abstract

Aims. Within a cluster, gravitational effects can lead to the removal of stars from their parent galaxies and their subsequent dispersal into the intracluster medium. Gas hydrodynamical effects can additionally strip gas and dust from galaxies; both gas and stars contribute to intracluster light (ICL). The properties of the ICL can therefore help constrain the physical processes at work in clusters by serving as a fossil record of the interaction history. Methods. The present study is designed to characterise this ICL for the first time in a ∼1014 MȮ and z ∼ 0.53 cluster of galaxies from imaging and spectroscopic points of view. By applying a wavelet-based method to CFHT Megacam and WIRCAM images, we detect significant quantities of diffuse light and are able to constrain their spectral energy distributions. These sources were then spectroscopically characterised with ESO Multi Unit Spectroscopic Explorer (MUSE) spectroscopic data. MUSE data were also used to compute redshifts of 24 cluster galaxies and search for cluster substructures. Results. An atypically large amount of ICL, equivalent in i′ to the emission from two brightest cluster galaxies, has been detected in this cluster. Part of the detected diffuse light has a very weak optical stellar component and apparently consists mainly of gas emission, while other diffuse light sources are clearly dominated by old stars. Furthermore, emission lines were detected in several places of diffuse light. Our spectral analysis shows that this emission likely originates from low-excitation parameter gas. Globally, the stellar contribution to the ICL is about 2.3 × 109 yr old even though the ICL is not currently forming a large number of stars. On the other hand, the contribution of the gas emission to the ICL in the optical is much greater than the stellar contribution in some regions, but the gas density is likely too low to form stars. These observations favour ram pressure stripping, turbulent viscous stripping, or supernovae winds as the origin of the large amount of intracluster light. Since the cluster appears not to be in a major merging phase, we conclude that ram pressure stripping is the most plausible process that generates the observed ICL sources. Conclusions. This is one of the first times that we are able to spectroscopically study diffuse light in such a distant and massive cluster, and it demonstrates the potential of MUSE observations for such studies. © ESO, 2016.
Original languageEnglish
JournalAstronomy and Astrophysics
Volume592
Early online date15 Jun 2016
DOIs
Publication statusPublished - Aug 2016

Bibliographical note

Export Date: 15 August 2017

CODEN: AAEJA

References: Adami, C., Ulmer, M.P., (2000) A&A, 361, p. 13; Adami, C., Durret, F., Guennou, L., Da Rocha, C., (2013) A&A, 551, p. A20; Arnaud, K.A., In astronomical data analysis software and systems V. (San Francisco: ASP) (1996) ASP Conf. Ser., 101, p. 17. , eds. G. H. Jacoby, & J. Barnes; Arnouts, S., Cristiani, S., Moscardini, L., (1999) MNRAS, 310, p. 540; Bruzual, G., Charlot, S., (2003) MNRAS, 344, p. 1000; Boselli, A., Hugues, T.M., Cortese, L., Gavazzi, G., Buat, V., (2013) A&A, 550, p. A114; Burke, C., Hilton, M., Collins, C., (2015) MNRAS, 449, p. 2353; Coupon, J., Ilbert, O., Kilbinger, M., (2009) A&A, 500, p. 981; Croxall, K.V., Van Zee, L., Lee, H., (2009) ApJ, 705, p. 723; Cui, W., Murante, G., Monaco, P., (2014) MNRAS, 437, p. 816; Da Rocha, C., Mendes De Oliveira, C., (2005) MNRAS, 364, p. 1069; DeMaio, T., Gonzalez, A., Zabludoff, A., (2015) MNRAS, 448, p. 1162; Donahue, M., Connor, T., Fogarty, K., (2015) ApJ, 805, p. 177; Dressler, A., (1980) ApJ, 236, p. 351; Dressler, A., Oemler, A., Jr., Couch, W.J., (1997) ApJ, 490, p. 577; Durret, F., Adami, C., Cappi, A., (2011) A&A, 535, p. A65; Fumagalli, M., Fossati, M., Hau, G.K.T., (2014) MNRAS, 445, p. 4335; Garilli, B., Fumana, M., Franzetti, P., (2010) PASP, 122, p. 827; Giles, P.A., Maughan, B.J., Pacaud, F., (2016) A&A, 592, p. A3. , XXL Survey, III; Giodini, S., Pierini, D., Finoguenov, A., (2009) ApJ, 703, p. 982; Gnedin, N.Y., (2000) ApJ, 535, p. L75; Gonzalez, A., Zaritsky, D., Zabludoff, A., (2007) ApJ, 666, p. 147; Gregg, M.D., West, M.J., (1998) Nature, 396, p. 549; Grevesse, N., Sauval, A.J., (1998) Space Sci. Rev., 85, p. 161; Guennou, L., Adami, C., Da Rocha, C., (2012) A&A, 537, p. A64; Guennou, L., Adami, C., Durret, F., (2014) A&A, 561, p. A112; Gunn, J.E., Gott, J.R., III, (1972) ApJ, 176, p. 1; Guzzo, L., Scodeggio, M., Garilli, B., (2014) A&A, 566, p. A108; Henriksen, M., Byrd, G., (1996) ApJ, 459, p. 82; Ilbert, O., Arnouts, S., McCracken, H.J., (2006) A&A, 457, p. 841; Ilbert, O., Capak, P., Salvato, M., (2009) ApJ, 690, p. 1236; Ilbert, O., Salvato, M., Le Floc'h, E., (2010) ApJ, 709, p. 644; Kennicutt, R.C., Jr., (1998) ARA&A, 36, p. 189; Koulouridis, E., Poggianti, B., Altieri, B., (2016) A&A, 592, p. A11. , XXL Survey, XII; Liu, F.S., Mao, S., Meng, X.M., (2012) MNRAS, 423, p. 422; Melnick, J., Giraud, E., Toledo, I., (2012) MNRAS, 427, p. 850; Mihos, J.C., (2004) Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution, Carnegie Obs. Astrophys. Ser. (CUP), p. 277; Mihos, J.C., Harding, P., Feldmeier, J., Morrison, H., (2005) ApJ, 631, p. L41; Moore, B., Lake, G., Katz, N., (1998) ApJ, 495, p. 139; Moustakas, J., Kennicutt, R.C., Jr., Tremonti, C.A., (2010) ApJS, 190, p. 233; Oey, M.S., Shields, J.C., (2000) ApJ, 539, p. 687; Pacaud, F., Clerc, N., Giles, P.A., (2016) A&A, 592, p. A2. , XXL Survey, II; Pereira, D.N.E., (2003), Undergraduate Thesis, Univ. Federal do Rio de Janeiro, Brazil; Pierre, M.M., Pacaud, F., Adami, C., (2016) A&A, 592, p. A1. , XXL Survey, I; Poole, G.B., Babul, A., McCarthy, I.G., (2007) MNRAS, 380, p. 437; Postman, M., Coe, D., Benitéz, N., (2012) ApJS, 199, p. 25; Puech, M., Hammer, F., Flores, H., (2010) A&A, 510, p. A68; Rosati, P., Borgani, S., Norman, C., (2002) ARA&A, 40, p. 539; Rudick, C.S., Mihos, J.C., Frey, L.H., McBride, C.K., (2009) ApJ, 699, p. 1518; Rué, F., Bijaoui, A., (1997) Exp. Astron., 7, p. 129; Sand, D.J., Graham, M.L., Bildfell, C., (2011) ApJ, 729, p. 142; Serna, A., Gerbal, D., (1996) A&A, 309, p. 65; Sun, M., Voit, G.M., Donahue, M., (2009) ApJ, 693, p. 1142; Tutukov, A.V., Dryomov, V.V., Dryomova, G.N., (2007) Astron. Rep., 51, p. 435; Verdugo, C., Combes, F., Dasyra, K., (2015) A&A, 582, p. L6; Weinmann, S.M., Van Den Bosch, F.C., Yang, X., Mo, K.J., (2006) MNRAS, 366, p. 2

Keywords

  • Galaxies: clusters: general
  • Galaxies: clusters: intracluster medium
  • Density of gases
  • Gas emissions
  • Gases
  • Light sources
  • Spectrum analysis
  • Stars
  • Supernovae
  • Wavelet analysis
  • Excitation parameters
  • Galaxies: clusters: General
  • Galaxies: clusters: intracluster mediums
  • Hydrodynamical effects
  • Intra-cluster medium
  • Ram-pressure stripping
  • Spectral energy distribution
  • Wavelet-based methods
  • Galaxies

Fingerprint

Dive into the research topics of 'The XXL Survey: VIII. MUSE characterisation of intracluster light in a z ∼ 0.53 cluster of galaxies'. Together they form a unique fingerprint.

Cite this