The reactions of para-halo diaryl diselenides with halogens. A structural investigation of the CT compound (p-FC6H4)2Se2I2, and the first reported “RSeI3” compound, (p-ClC6H4)SeI·I2, which contains a covalent Se-I bond

Research output: Contribution to journalArticlepeer-review

Authors

  • Nicholas A Barnes
  • Stephen M Godfrey
  • Jill Hughes
  • Rana Z Khan
  • Imrana Mushtaq
  • And 3 others
  • Ruth T A Ollerenshaw
  • Robin G Pritchard
  • Shamsa Sarwar

Colleges, School and Institutes

External organisations

  • University of Manchester

Abstract

The reactions of the diaryl-diselenides (p-FC(6)H(4))(2)Se(2) and (p-ClC(6)H(4))(2)Se(2) with diiodine have been investigated. Species of stoichiometry "RSeI" are formed when the ratio employed is 1:1. The solid-state structure of "(p-FC(6)H(4))SeI" has been determined, and shown to be a charge-transfer (CT) adduct, (p-FC(6)H(4))(2)Se(2)I(2), where the Se-Se bond is retained and the diiodine molecule interacts with only one of the selenium atoms. The Se-I bond in (p-FC(6)H(4))(2)Se(2)I(2) is 2.9835(12) Å, which is typical for a (10-I-2) Se-I-I CT system. When diiodine is reacted in a 3:1 ratio with (p-XC(6)H(4))(2)Se(2) (X = F, Cl) species of stoichiometry "RSeI(3)" are formed. The structure of "(p-ClC(6)H(4))SeI(3)" reveals that this is not a selenium(IV) compound, but is better represented as a selenium(II) CT adduct, (p-ClC(6)H(4))SeI·I(2). The Se-I bond to the diiodine molecule is typical in magnitude for a CT adduct, Se-I: 2.8672(5) Å, whereas the other Se-I bond is much shorter, Se-I: 2.5590(6) Å, and is a genuine example of a rarely observed covalent Se-I bond, which appears to be stabilised by a weak Se···I interaction from a neighbouring iodine atom. The reaction of (p-ClC(6)H(4))SeI with Ph(3)P results in the formation of a CT adduct, Ph(3)PSe(p-ClC(6)H(4))I, which has a T-shaped geometry at selenium (10-Se-3). By contrast, the reaction of (p-FC(6)H(4))SeI with Ph(3)P does not form an adduct, but results in the formation of Ph(3)PI(2) and (p-FC(6)H(4))(2)Se(2).

Details

Original languageEnglish
Pages (from-to)2735-44
Number of pages10
JournalDalton Transactions
Volume42
Issue number8
Publication statusPublished - 28 Feb 2013

Keywords

  • Crystallography, X-Ray, Halogens/chemistry, Models, Molecular, Molecular Structure, Organoselenium Compounds/chemical synthesis