The persistence of a proxy for cooking emissions in megacities: a kinetic study of the ozonolysis of self-assembled films by simultaneous Small & Wide Angle X-ray Scattering (SAXS/WAXS) and Raman microscopy.

Research output: Contribution to journalArticlepeer-review

Standard

Harvard

APA

Vancouver

Author

Bibtex

@article{1dadde71aad94eb3aabfaf31edb0dd72,
title = "The persistence of a proxy for cooking emissions in megacities: a kinetic study of the ozonolysis of self-assembled films by simultaneous Small & Wide Angle X-ray Scattering (SAXS/WAXS) and Raman microscopy.",
abstract = "Cooking emissions account for a significant proportion of the organic aerosol emitted into the urban environment and high pollution events have been linked to an increased organic content on urban particulate matter surfaces. We present a kinetic study on surface coatings of self-assembled (semi-solid) oleic acid-sodium oleate cooking aerosol proxies undergoing ozonolysis. We found a clear film thickness-dependent kinetic behaviour and measured the effect of the organic phase on the kinetics for this system. In addition to the thickness-dependent kinetics, we show that significant fractions of unreacted proxy remain at the end of extensive ozone exposure and that this effect scales approximately linearly with film thickness, suggesting that a late-stage inert reaction product may form to inhibit reaction progress – effectively building up an inert crust. We determine this by using a range of simultaneous analytical techniques; most notably Small-Angle X-ray Scattering (SAXS) has been used for the first time to measure reaction kinetics of films of a wide range of thicknesses from ca. 0.59 to 73 µm with films < 10 µm thick being of potential atmospheric relevance. These observations have implications for the evolution of particulate matter in the urban environment, potentially extending the atmospheric lifetimes of harmful aerosol components and affecting the local urban air quality and climate.",
author = "Adam Milsom and Adam Squires and Ben Woden and Nick Terrill and Andrew Ward and Christian Pfrang",
year = "2020",
month = sep,
day = "7",
doi = "10.1039/D0FD00088D",
language = "English",
journal = "Faraday Discussions",
issn = "1359-6640",
publisher = "Royal Society of Chemistry",

}

RIS

TY - JOUR

T1 - The persistence of a proxy for cooking emissions in megacities: a kinetic study of the ozonolysis of self-assembled films by simultaneous Small & Wide Angle X-ray Scattering (SAXS/WAXS) and Raman microscopy.

AU - Milsom, Adam

AU - Squires, Adam

AU - Woden, Ben

AU - Terrill, Nick

AU - Ward, Andrew

AU - Pfrang, Christian

PY - 2020/9/7

Y1 - 2020/9/7

N2 - Cooking emissions account for a significant proportion of the organic aerosol emitted into the urban environment and high pollution events have been linked to an increased organic content on urban particulate matter surfaces. We present a kinetic study on surface coatings of self-assembled (semi-solid) oleic acid-sodium oleate cooking aerosol proxies undergoing ozonolysis. We found a clear film thickness-dependent kinetic behaviour and measured the effect of the organic phase on the kinetics for this system. In addition to the thickness-dependent kinetics, we show that significant fractions of unreacted proxy remain at the end of extensive ozone exposure and that this effect scales approximately linearly with film thickness, suggesting that a late-stage inert reaction product may form to inhibit reaction progress – effectively building up an inert crust. We determine this by using a range of simultaneous analytical techniques; most notably Small-Angle X-ray Scattering (SAXS) has been used for the first time to measure reaction kinetics of films of a wide range of thicknesses from ca. 0.59 to 73 µm with films < 10 µm thick being of potential atmospheric relevance. These observations have implications for the evolution of particulate matter in the urban environment, potentially extending the atmospheric lifetimes of harmful aerosol components and affecting the local urban air quality and climate.

AB - Cooking emissions account for a significant proportion of the organic aerosol emitted into the urban environment and high pollution events have been linked to an increased organic content on urban particulate matter surfaces. We present a kinetic study on surface coatings of self-assembled (semi-solid) oleic acid-sodium oleate cooking aerosol proxies undergoing ozonolysis. We found a clear film thickness-dependent kinetic behaviour and measured the effect of the organic phase on the kinetics for this system. In addition to the thickness-dependent kinetics, we show that significant fractions of unreacted proxy remain at the end of extensive ozone exposure and that this effect scales approximately linearly with film thickness, suggesting that a late-stage inert reaction product may form to inhibit reaction progress – effectively building up an inert crust. We determine this by using a range of simultaneous analytical techniques; most notably Small-Angle X-ray Scattering (SAXS) has been used for the first time to measure reaction kinetics of films of a wide range of thicknesses from ca. 0.59 to 73 µm with films < 10 µm thick being of potential atmospheric relevance. These observations have implications for the evolution of particulate matter in the urban environment, potentially extending the atmospheric lifetimes of harmful aerosol components and affecting the local urban air quality and climate.

U2 - 10.1039/D0FD00088D

DO - 10.1039/D0FD00088D

M3 - Article

JO - Faraday Discussions

JF - Faraday Discussions

SN - 1359-6640

ER -