The nature of GPS differential receiver bias variability: An examination in the polar cap region

David R. Themens*, P. T. Jayachandran, Richard B. Langley

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

While modern GPS receiver differential code bias estimation techniques have become highly refined, they still demonstrate unphysical behavior, namely, notable solar cycle variability. This study investigates the nature of these seasonal and solar cycle bias variabilities in the polar cap region using single-station bias estimation methods. It is shown that the minimization of standard deviation bias estimation technique is linearly dependent on the user's choice of shell height, where the sensitivity of this dependence varies significantly from 1 total electron content unit (1 TECU = 1016 el m-2) per 4000 km in solar minimum winter to in excess of 1 TECU per 90 km during solar maximum summer. Using an ionosonde, we find appreciable shell height variability resulting in bias variabilities of up to 2 TECU. Comparing northward face Resolute Incoherent Scatter Radar (RISR-N) measurements to a collocated GPS station, we find that RISR-derived GPS receiver biases vary seasonally but not with solar cycle. RMS differences between bias estimation methods and observation between 2009 and 2013 were found to range from 2.7 TECU to 3.4 TECU, depending on method. To account for the erroneous solar cycle variability of standard bias estimation approaches, we linearly fit these biases to sunspot number, removing the trend. RMS errors after sunspot detrending these biases are reduced to 1.91 TECU. Also, these ISR-derived and sunspot-detrended biases are fit to ambient temperature, where a significant correlation is found. By using these temperature-fitted biases we further reduce RMS errors to 1.66 TECU. These results can be taken as further evidence of temperature-dependent dispersion in the GPS cabling and antenna hardware.

Original languageEnglish
Pages (from-to)8155-8175
Number of pages21
JournalJournal of Geophysical Research-Space Physics
Volume120
Issue number9
DOIs
Publication statusPublished - Sept 2015

Keywords

  • GPS
  • incoherent scatter radar
  • ionosphere
  • receiver biases

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint

Dive into the research topics of 'The nature of GPS differential receiver bias variability: An examination in the polar cap region'. Together they form a unique fingerprint.

Cite this