The Effect of Chemical Composition on High Temperature Behaviour of Fe and Cu Doped Mn-Co spinels

Research output: Contribution to journalArticle

Authors

  • Andrea Masi
  • Mariangela Bellusci
  • Stephen J. McPhail
  • Franco Padella
  • Priscilla Reale
  • Maurizio Carlini

Colleges, School and Institutes

External organisations

  • University of Tuscia
  • ENEA

Abstract

Mixed Mn-Co spinels are currently studied as protective coating materials for Solid Oxide Fuel Cells interconnects. Compositional changes in manganese cobaltites lead to modifications in the materials properties, such as sintering behaviour, thermal expansion and electrical conductivity, with advantages in the technological application.
In this work, the effect of Fe, Cu and simultaneous Fe+Cu doping of Mn-Co spinels has been studied. Different oxide powder mixtures were prepared with a High Energy Ball Milling (HEBM) treatment, obtaining highly reactive oxides that easily form single spinel phase compounds by moderate heating. The effect of the composition is observed on high temperature stability of the spinel phase and on densification behaviour of the powders, greatly enhanced by copper addition.
Analyses carried out on sintered pellets allow to observe simple relations among dopant concentration, thermal expansion and electrical conductivity. The combined effect is obtained in case of the simultaneous addition of multiple dopants. An appropriate composition can be therefore designed to obtain a material characterized by enhanced sintering behaviour, high electrical conductivity and tailored thermal expansion to fulfil the application requirements.

Details

Original languageEnglish
Pages (from-to)2829-2835
JournalCeramics International
Volume43
Issue number2
Early online date20 Nov 2016
Publication statusPublished - 1 Feb 2017

Keywords

  • Milling , Spinels , Thermal expansion , Electrical conductivity