Temporal and spatial activation of caspase-like enzymes induced by self-incompatibility in Papaver pollen

Research output: Contribution to journalArticle

Standard

Harvard

APA

Vancouver

Author

Bibtex

@article{ee2444143dd24b929bc6561447d62563,
title = "Temporal and spatial activation of caspase-like enzymes induced by self-incompatibility in Papaver pollen",
abstract = "Caspase-like proteases are universal mediators of programmed cell death (PCD). Because plants have no caspase homologs, establishing the nature of their caspase-like activities is of considerable importance to our understanding of PCD in plants. Caspase-3, displaying DEVD specificity, is a key executioner caspase in animal cells. Self-incompatibility (SI) is an important mechanism to prevent self-fertilization and inbreeding in higher plants by inhibiting incompatible pollen. In Papaver rhoeas, SI activates a caspase-3-like/DEVDase activity in incompatible pollen that plays a pivotal role in regulating PCD. Here we characterize the SI-induced caspase-like activities in detail; our work provides insights into the temporal and spatial activation of plant caspase-like enzymes. We show that SI also activates a VEIDase and a LEVDase and that the VEIDase plays a role in SI-induced PCD. The DEVDase and VEIDase are activated remarkably rapidly: detectable within 1-2 h after SI induction; the LEVDase activity peaks later. Importantly, we show live-cell imaging of a DEVDase activity in a higher plant cell; the SI-activated DEVDase has a cytosolic and nuclear localization. We also demonstrate that SI induces a rapid and substantial cytosolic acidification that matches the in vitro pH optima for the SI-induced caspase activities. Because both cytosolic acidification and nuclear caspase localization are observed during apoptosis in animal cells, our data provide striking parallels between SI-induced PCD and apoptosis in animal cells.",
keywords = "caspase-like activity, programmed cell death, acidification",
author = "Maurice Bosch and {Franklin Tong}, Vernonica",
year = "2007",
month = nov,
day = "7",
doi = "10.1073/pnas.0705826104",
language = "English",
volume = "104",
pages = "18327--18332",
journal = "Proceedings of the National Academy of Sciences",
issn = "1091-6490",
publisher = "National Academy of Sciences",
number = "46",

}

RIS

TY - JOUR

T1 - Temporal and spatial activation of caspase-like enzymes induced by self-incompatibility in Papaver pollen

AU - Bosch, Maurice

AU - Franklin Tong, Vernonica

PY - 2007/11/7

Y1 - 2007/11/7

N2 - Caspase-like proteases are universal mediators of programmed cell death (PCD). Because plants have no caspase homologs, establishing the nature of their caspase-like activities is of considerable importance to our understanding of PCD in plants. Caspase-3, displaying DEVD specificity, is a key executioner caspase in animal cells. Self-incompatibility (SI) is an important mechanism to prevent self-fertilization and inbreeding in higher plants by inhibiting incompatible pollen. In Papaver rhoeas, SI activates a caspase-3-like/DEVDase activity in incompatible pollen that plays a pivotal role in regulating PCD. Here we characterize the SI-induced caspase-like activities in detail; our work provides insights into the temporal and spatial activation of plant caspase-like enzymes. We show that SI also activates a VEIDase and a LEVDase and that the VEIDase plays a role in SI-induced PCD. The DEVDase and VEIDase are activated remarkably rapidly: detectable within 1-2 h after SI induction; the LEVDase activity peaks later. Importantly, we show live-cell imaging of a DEVDase activity in a higher plant cell; the SI-activated DEVDase has a cytosolic and nuclear localization. We also demonstrate that SI induces a rapid and substantial cytosolic acidification that matches the in vitro pH optima for the SI-induced caspase activities. Because both cytosolic acidification and nuclear caspase localization are observed during apoptosis in animal cells, our data provide striking parallels between SI-induced PCD and apoptosis in animal cells.

AB - Caspase-like proteases are universal mediators of programmed cell death (PCD). Because plants have no caspase homologs, establishing the nature of their caspase-like activities is of considerable importance to our understanding of PCD in plants. Caspase-3, displaying DEVD specificity, is a key executioner caspase in animal cells. Self-incompatibility (SI) is an important mechanism to prevent self-fertilization and inbreeding in higher plants by inhibiting incompatible pollen. In Papaver rhoeas, SI activates a caspase-3-like/DEVDase activity in incompatible pollen that plays a pivotal role in regulating PCD. Here we characterize the SI-induced caspase-like activities in detail; our work provides insights into the temporal and spatial activation of plant caspase-like enzymes. We show that SI also activates a VEIDase and a LEVDase and that the VEIDase plays a role in SI-induced PCD. The DEVDase and VEIDase are activated remarkably rapidly: detectable within 1-2 h after SI induction; the LEVDase activity peaks later. Importantly, we show live-cell imaging of a DEVDase activity in a higher plant cell; the SI-activated DEVDase has a cytosolic and nuclear localization. We also demonstrate that SI induces a rapid and substantial cytosolic acidification that matches the in vitro pH optima for the SI-induced caspase activities. Because both cytosolic acidification and nuclear caspase localization are observed during apoptosis in animal cells, our data provide striking parallels between SI-induced PCD and apoptosis in animal cells.

KW - caspase-like activity

KW - programmed cell death

KW - acidification

U2 - 10.1073/pnas.0705826104

DO - 10.1073/pnas.0705826104

M3 - Article

C2 - 17989229

VL - 104

SP - 18327

EP - 18332

JO - Proceedings of the National Academy of Sciences

JF - Proceedings of the National Academy of Sciences

SN - 1091-6490

IS - 46

ER -