Task load modulates tDCS effects on brain network for phonological processing

Research output: Contribution to journalArticlepeer-review

Standard

Task load modulates tDCS effects on brain network for phonological processing. / Rodrigues de Almeida, Lílian; Pope, Paul A; Hansen, Peter C.

In: Cognitive Processing, 10.03.2020.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Bibtex

@article{ff4853eaca904802a5539faeea78f629,
title = "Task load modulates tDCS effects on brain network for phonological processing",
abstract = "Motor participation in phonological processing can be modulated by task nature across the speech perception to speech production range. The pars opercularis of the left inferior frontal gyrus (LIFG) would be increasingly active across this range, because of changing motor demands. Here, we investigated with simultaneous tDCS and fMRI whether the task load modulation of tDCS effects translates into predictable patterns of functional connectivity. Findings were analysed under the {"}multi-node framework{"}, according to which task load and the network structure underlying cognitive functions are modulators of tDCS effects. In a within-subject study, participants (N = 20) performed categorical perception, lexical decision and word naming tasks [which differentially recruit the target of stimulation (LIFG)], which were repeatedly administered in three tDCS sessions (anodal, cathodal and sham). The LIFG, left superior temporal gyrus and their right homologues formed the target network subserving phonological processing. C-tDCS inhibition and A-tDCS excitation should increase with task load. Correspondingly, the larger the task load, the larger the relevance of the target for the task and smaller the room for compensation of C-tDCS inhibition by less relevant nodes. Functional connectivity analyses were performed with partial correlations, and network compensation globally inferred by comparing the relative number of significant connections each condition induced relative to sham. Overall, simultaneous tDCS and fMRI was adequate to show that motor participation in phonological processing is modulated by task nature. Network responses induced by C-tDCS across phonological processing tasks matched predictions. A-tDCS effects were attributed to optimisation of network efficiency.",
keywords = "Phonological processing, Task load, LIFG, Language, fMRI, tDCS",
author = "{Rodrigues de Almeida}, L{\'i}lian and Pope, {Paul A} and Hansen, {Peter C}",
year = "2020",
month = mar,
day = "10",
doi = "10.1007/s10339-020-00964-w",
language = "English",
journal = "Cognitive Processing",
issn = "1612-4782",
publisher = "Springer",

}

RIS

TY - JOUR

T1 - Task load modulates tDCS effects on brain network for phonological processing

AU - Rodrigues de Almeida, Lílian

AU - Pope, Paul A

AU - Hansen, Peter C

PY - 2020/3/10

Y1 - 2020/3/10

N2 - Motor participation in phonological processing can be modulated by task nature across the speech perception to speech production range. The pars opercularis of the left inferior frontal gyrus (LIFG) would be increasingly active across this range, because of changing motor demands. Here, we investigated with simultaneous tDCS and fMRI whether the task load modulation of tDCS effects translates into predictable patterns of functional connectivity. Findings were analysed under the "multi-node framework", according to which task load and the network structure underlying cognitive functions are modulators of tDCS effects. In a within-subject study, participants (N = 20) performed categorical perception, lexical decision and word naming tasks [which differentially recruit the target of stimulation (LIFG)], which were repeatedly administered in three tDCS sessions (anodal, cathodal and sham). The LIFG, left superior temporal gyrus and their right homologues formed the target network subserving phonological processing. C-tDCS inhibition and A-tDCS excitation should increase with task load. Correspondingly, the larger the task load, the larger the relevance of the target for the task and smaller the room for compensation of C-tDCS inhibition by less relevant nodes. Functional connectivity analyses were performed with partial correlations, and network compensation globally inferred by comparing the relative number of significant connections each condition induced relative to sham. Overall, simultaneous tDCS and fMRI was adequate to show that motor participation in phonological processing is modulated by task nature. Network responses induced by C-tDCS across phonological processing tasks matched predictions. A-tDCS effects were attributed to optimisation of network efficiency.

AB - Motor participation in phonological processing can be modulated by task nature across the speech perception to speech production range. The pars opercularis of the left inferior frontal gyrus (LIFG) would be increasingly active across this range, because of changing motor demands. Here, we investigated with simultaneous tDCS and fMRI whether the task load modulation of tDCS effects translates into predictable patterns of functional connectivity. Findings were analysed under the "multi-node framework", according to which task load and the network structure underlying cognitive functions are modulators of tDCS effects. In a within-subject study, participants (N = 20) performed categorical perception, lexical decision and word naming tasks [which differentially recruit the target of stimulation (LIFG)], which were repeatedly administered in three tDCS sessions (anodal, cathodal and sham). The LIFG, left superior temporal gyrus and their right homologues formed the target network subserving phonological processing. C-tDCS inhibition and A-tDCS excitation should increase with task load. Correspondingly, the larger the task load, the larger the relevance of the target for the task and smaller the room for compensation of C-tDCS inhibition by less relevant nodes. Functional connectivity analyses were performed with partial correlations, and network compensation globally inferred by comparing the relative number of significant connections each condition induced relative to sham. Overall, simultaneous tDCS and fMRI was adequate to show that motor participation in phonological processing is modulated by task nature. Network responses induced by C-tDCS across phonological processing tasks matched predictions. A-tDCS effects were attributed to optimisation of network efficiency.

KW - Phonological processing

KW - Task load

KW - LIFG

KW - Language

KW - fMRI

KW - tDCS

U2 - 10.1007/s10339-020-00964-w

DO - 10.1007/s10339-020-00964-w

M3 - Article

C2 - 32152767

JO - Cognitive Processing

JF - Cognitive Processing

SN - 1612-4782

ER -