Targeted mutations in the ATR pathway define agent-specific requirements for cancer cell growth and survival

Research output: Contribution to journalArticle

Authors

  • Deborah Wilsker
  • Jon H Chung
  • Ivan Pradilla
  • Eva Petermann
  • Thomas Helleday
  • Fred Bunz

Colleges, School and Institutes

External organisations

  • Department of Radiation Oncology and Molecular Radiation Sciences and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.

Abstract

Many anticancer agents induce DNA strand breaks or cause the accumulation of DNA replication intermediates. The protein encoded by ataxia-telangiectasia mutated and Rad 3-related (ATR) generates signals in response to these altered DNA structures and activates cellular survival responses. Accordingly, ATR has drawn increased attention as a potential target for novel therapeutic strategies designed to potentiate the effects of existing drugs. In this study, we use a unique panel of genetically modified human cancer cells to unambiguously test the roles of upstream and downstream components of the ATR pathway in the responses to common therapeutic agents. Upstream, the S-phase-specific cyclin-dependent kinase (Cdk) 2 was required for robust activation of ATR in response to diverse chemotherapeutic agents. While Cdk2-mediated ATR activation promoted cell survival after treatment with many drugs, signaling from ATR directly to the checkpoint kinase Chk1 was required for survival responses to only a subset of the drugs tested. These results show that specifically inhibiting the Cdk2/ATR/Chk1 pathway via distinct regulators can differentially sensitize cancer cells to a wide range of therapeutic agents.

Bibliographic note

©2011 AACR.

Details

Original languageEnglish
Pages (from-to)98-107
Number of pages10
JournalMolecular Cancer Therapeutics
Volume11
Issue number1
Publication statusPublished - Jan 2012

Keywords

  • Antineoplastic Agents, Ataxia Telangiectasia Mutated Proteins, Cell Cycle Proteins, Cell Line, Tumor, Cell Proliferation, Cell Survival, Colonic Neoplasms, Cyclin-Dependent Kinase 2, Humans, Protein Kinases, Protein-Serine-Threonine Kinases, Signal Transduction