Surface rheological measurements of isolated food foam systems

Christopher Clarke, Fotios Spyropoulos, Ian Norton

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
323 Downloads (Pure)

Abstract

Liquid foams represent a key component to a vast range of food industry products, from ice creams to the crema on coffee. Longevity of these foams is a highly desirable attribute; however, in order for foam stability to be effectively controlled, a better understanding of the interdependence of the bulk liquid and air-liquid interfacial rheologies is required. This study follows an increasing trend in experimental investigations made of isolated foam structures at the microscale, where the bulk and surface dynamics of a single foam liquid channel can be accurately assessed. Isolated foam channels with adjoining nodes were studied for aqueous solutions of four food grade surfactants. Existing observations of distortions to sodium dodecyl sulphate channel geometries were confirmed for solutions of Tween 20 (T20) and Tween 80 (T80) and were well described by the theory presented here. Moreover, previously unseen distortions to liquid channels were observed for polymeric surfactant systems (hydroxypropyl methylcellulose and hydrolyzed pea protein blend), which were proposed to result from their high surface viscosities. The apparent surface viscosities, μs, of surfactants tested here ranged from high (10 g/s < μs < 10−3 g/s) for polymeric surfactants to very low (10−10 g/s < μs < 10−8 g/s) for Tweens, clearly demarking the regimes of viscous and inertial dominant flows, respectively. It is recommended that further work seeks to investigate the finding of a strong correlation between μs and channel surface tension, γ, for soluble surfactant systems, which could explain the apparent non-Newtonian values of μs that were consistently measured here.
Original languageEnglish
Article number092002
Pages (from-to) 092002-1-092002-11
Number of pages11
JournalPhysics of Fluids
Volume31
Issue number9
DOIs
Publication statusPublished - 20 Sept 2019

ASJC Scopus subject areas

  • Computational Mechanics
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Surface rheological measurements of isolated food foam systems'. Together they form a unique fingerprint.

Cite this