Suppression of type 2 diabetes mellitus-induced aortic ultrastructural alterations in rats by insulin: an association of vascular injury biomarkers: Insulin protects aorta ultrastructure against T2DM

Research output: Contribution to journalArticle


Colleges, School and Institutes

External organisations

  • Department of Physiology, College of Medicine, King Khalid University, Abha


Diabetes represents a major public health problem and an estimated 70% of people with diabetes die of cardiovascular complications. The protective effect of insulin treatment against ultrastructural damage to the tunica intima and tunica media of the aorta induced by type 2 diabetes mellitus (T2DM) has not been investigated before using transmission electron microscopy (TEM). Therefore, we induced T2DM in rats using high fat diet and streptozotocin (50 mg/kg) and administered insulin daily by i.v injection for 8 weeks to the treatment group. Whereas, the T2DM control group were left untreated for the duration of the experiment. A comparison was also made between the effect of insulin on aortic tissue and the blood level of biomarkers of vascular injury, inflammation, and oxidative stress. T2DM induced profound ultrastructural damage to the aortic endothelium and vascular smooth muscle cells, which were substantially protected with insulin. Furthermore, insulin returned blood sugar to a control level and significantly (p<0.05) inhibited diabetic up-regulation of endothelial and leukocyte intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion protein 1 (VCAM-1), endothelial cell adhesion molecules, P-selectin and E-selectin, tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), and malondialdehyde (MDA). Furthermore, insulin augmented the blood level of the anti-oxidant enzyme superoxide dismutase (SOD). We conclude that in a rat model of T2DM, insulin treatment substantially reduces aortic injury secondary to T2DM for a period of 8 weeks, possibly due to the inhibition of hyperglycemia, vascular activation, inflammation, and oxidative stress.


Original languageEnglish
JournalUltrastructural Pathology
Publication statusAccepted/In press - 2020