Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins

Mohammed Jamshad, Vinciane Grimard, Ilaria Idini, Tim J. Knowles, Miriam R. Dowle, Naomi Schofield, Pooja Sridhar, Yupin Lin, Rachael Finka, Mark Wheatley, Owen R. T. Thomas, Richard E. Palmer, Michael Overduin, Cédric Govaerts, Jean-marie Ruysschaert, Karen J. Edler, Timothy Dafforn

Research output: Contribution to journalArticlepeer-review

100 Citations (Scopus)

Abstract

In the past few years there has been a growth in the use of nanoparticles for stabilizing lipid membranes that contain embedded proteins. These bionanoparticles provide a solution to the challenging problem of membrane protein isolation by maintaining a lipid bilayer essential to protein integrity and activity. We have previously described the use of an amphipathic polymer (poly(styrene-co-maleic acid), SMA) to produce discoidal nanoparticles with a lipid bilayer core containing the embedded protein. However the structure of the nanoparticle itself has not yet been determined. This leaves a major gap in understanding how the SMA stabilizes the encapsulated bilayer and how the bilayer relates physically and structurally to an unencapsulated lipid bilayer. In this paper we address this issue by describing the structure of the SMA lipid particle (SMALP) using data from small angle neutron scattering (SANS), electron microscopy (EM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and nuclear magnetic resonance spectroscopy (NMR). We show that the particle is disc shaped containing a polymer “bracelet” encircling the lipid bilayer. The structure and orientation of the individual components within the bilayer and polymer are determined showing that styrene moieties within SMA intercalate between the lipid acyl chains. The dimensions of the encapsulated bilayer are also determined and match those measured for a natural membrane. Taken together, the description of the structure of the SMALP forms the foundation for future development and applications of SMALPs in membrane protein production and analysis.
Original languageEnglish
Pages (from-to)774-789
JournalNano Research
Volume8
Issue number3
Early online date24 Oct 2014
DOIs
Publication statusPublished - Mar 2015

Keywords

  • nanoparticles
  • lipid
  • polymer
  • membrane proteins
  • structure
  • detergent

Fingerprint

Dive into the research topics of 'Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins'. Together they form a unique fingerprint.

Cite this