Spatial dynamics of synthetic microbial mutualists and their parasites

Research output: Contribution to journalArticle

Standard

Spatial dynamics of synthetic microbial mutualists and their parasites. / Amor, Daniel R.; Montañez, Raúl; Duran-nebreda, Salva; Solé, Ricard; Pascual, Mercedes (Editor).

In: PLoS Computational Biology, Vol. 13, No. 8, e1005689, 08.2017, p. e1005689.

Research output: Contribution to journalArticle

Harvard

APA

Vancouver

Author

Amor, Daniel R. ; Montañez, Raúl ; Duran-nebreda, Salva ; Solé, Ricard ; Pascual, Mercedes (Editor). / Spatial dynamics of synthetic microbial mutualists and their parasites. In: PLoS Computational Biology. 2017 ; Vol. 13, No. 8. pp. e1005689.

Bibtex

@article{6054b0b9a27144748d4e97f2a69f9a7f,
title = "Spatial dynamics of synthetic microbial mutualists and their parasites",
abstract = "A major force contributing to the emergence of novelty in nature is the presence of cooperative interactions, where two or more components of a system act in synergy, sometimes leading to higher-order, emergent phenomena. Within molecular evolution, the so called hypercycle defines the simplest model of an autocatalytic cycle, providing major theoretical insights on the evolution of cooperation in the early biosphere. These closed cooperative loops have also inspired our understanding of how catalytic loops appear in ecological systems. In both cases, hypercycle and ecological cooperative loops, the role played by space seems to be crucial for their stability and resilience against parasites. However, it is difficult to test these ideas in natural ecosystems, where time and spatial scales introduce considerable limitations. Here, we use engineered bacteria as a model system to a variety of environmental scenarios identifying trends that transcend the specific model system, such an enhanced genetic diversity in environments requiring mutualistic interactions. Interestingly, we show that improved environments can slow down mutualistic range expansions as a result of genetic drift effects preceding local resource depletion. Moreover, we show that a parasitic strain is excluded from the population during range expansions (which acknowledges a classical prediction). Nevertheless, environmental deterioration can reshape population interactions, this same strain becoming part of a three-species mutualistic web in scenarios in which the two-strain mutualism becomes non functional. The evolutionary and ecological implications for the design of synthetic ecosystems are outlined.",
author = "Amor, {Daniel R.} and Ra{\'u}l Monta{\~n}ez and Salva Duran-nebreda and Ricard Sol{\'e} and Mercedes Pascual",
year = "2017",
month = aug
doi = "10.1371/journal.pcbi.1005689",
language = "English",
volume = "13",
pages = "e1005689",
journal = "PLoS Computational Biology",
issn = "1553-734X",
publisher = "Public Library of Science (PLOS)",
number = "8",

}

RIS

TY - JOUR

T1 - Spatial dynamics of synthetic microbial mutualists and their parasites

AU - Amor, Daniel R.

AU - Montañez, Raúl

AU - Duran-nebreda, Salva

AU - Solé, Ricard

A2 - Pascual, Mercedes

PY - 2017/8

Y1 - 2017/8

N2 - A major force contributing to the emergence of novelty in nature is the presence of cooperative interactions, where two or more components of a system act in synergy, sometimes leading to higher-order, emergent phenomena. Within molecular evolution, the so called hypercycle defines the simplest model of an autocatalytic cycle, providing major theoretical insights on the evolution of cooperation in the early biosphere. These closed cooperative loops have also inspired our understanding of how catalytic loops appear in ecological systems. In both cases, hypercycle and ecological cooperative loops, the role played by space seems to be crucial for their stability and resilience against parasites. However, it is difficult to test these ideas in natural ecosystems, where time and spatial scales introduce considerable limitations. Here, we use engineered bacteria as a model system to a variety of environmental scenarios identifying trends that transcend the specific model system, such an enhanced genetic diversity in environments requiring mutualistic interactions. Interestingly, we show that improved environments can slow down mutualistic range expansions as a result of genetic drift effects preceding local resource depletion. Moreover, we show that a parasitic strain is excluded from the population during range expansions (which acknowledges a classical prediction). Nevertheless, environmental deterioration can reshape population interactions, this same strain becoming part of a three-species mutualistic web in scenarios in which the two-strain mutualism becomes non functional. The evolutionary and ecological implications for the design of synthetic ecosystems are outlined.

AB - A major force contributing to the emergence of novelty in nature is the presence of cooperative interactions, where two or more components of a system act in synergy, sometimes leading to higher-order, emergent phenomena. Within molecular evolution, the so called hypercycle defines the simplest model of an autocatalytic cycle, providing major theoretical insights on the evolution of cooperation in the early biosphere. These closed cooperative loops have also inspired our understanding of how catalytic loops appear in ecological systems. In both cases, hypercycle and ecological cooperative loops, the role played by space seems to be crucial for their stability and resilience against parasites. However, it is difficult to test these ideas in natural ecosystems, where time and spatial scales introduce considerable limitations. Here, we use engineered bacteria as a model system to a variety of environmental scenarios identifying trends that transcend the specific model system, such an enhanced genetic diversity in environments requiring mutualistic interactions. Interestingly, we show that improved environments can slow down mutualistic range expansions as a result of genetic drift effects preceding local resource depletion. Moreover, we show that a parasitic strain is excluded from the population during range expansions (which acknowledges a classical prediction). Nevertheless, environmental deterioration can reshape population interactions, this same strain becoming part of a three-species mutualistic web in scenarios in which the two-strain mutualism becomes non functional. The evolutionary and ecological implications for the design of synthetic ecosystems are outlined.

U2 - 10.1371/journal.pcbi.1005689

DO - 10.1371/journal.pcbi.1005689

M3 - Article

VL - 13

SP - e1005689

JO - PLoS Computational Biology

JF - PLoS Computational Biology

SN - 1553-734X

IS - 8

M1 - e1005689

ER -