Self-sensing composites: In-situ detection of fibre fracture

Research output: Contribution to journalArticle

Colleges, School and Institutes

External organisations

  • Physical Sciences Department

Abstract

The primary load-bearing component in a composite material is the reinforcing fibres. This paper reports on a technique to study the fracture of individual reinforcing fibres or filaments in real-time. Custom-made small-diameter optical fibres with a diameter of 12 (±2) micrometres were used to detect the fracture of individual filaments during tensile loading of unreinforced bundles and composites. The unimpregnated bundles were end-tabbed and tensile tested to failure. A simple technique based on resin-infusion was developed to manufacture composites with a negligible void content. In both cases, optical fibre connectors were attached to the ends of the small-diameter optical fibre bundles to enable light to be coupled into the bundle via one end whilst the opposite end was photographed using a high-speed camera. The feasibility of detecting the fracture of each of the filaments in the bundle and composite was demonstrated. The in-situ damage detection technique was also applied to E-glass bundles and composites; this will be reported in a subsequent publication.

Details

Original languageEnglish
Article number615
JournalSensors
Volume16
Issue number5
Early online date28 Apr 2016
Publication statusPublished - 1 May 2016

Keywords

  • Damage detection, Fibre fracture, Optical fibre sensors, Self-sensing, Structural health monitoring