Selective Pyroelectric Detection of Millimetre Waves Using Ultra-Thin Metasurface Absorbers

Research output: Contribution to journalArticlepeer-review

Standard

Selective Pyroelectric Detection of Millimetre Waves Using Ultra-Thin Metasurface Absorbers. / Kuznetsov, Sergei A.; Paulish, Andrey G.; Navarro-Cia, Miguel; Arzhannikov, A. V.

In: Scientific Reports, Vol. 6, 21079 , 16.02.2016.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Bibtex

@article{cf81570563a24567bfd3ed00213f58a7,
title = "Selective Pyroelectric Detection of Millimetre Waves Using Ultra-Thin Metasurface Absorbers",
abstract = "Sensing infrared radiation is done inexpensively with pyroelectric detectors that generate a temporary voltage when they are heated by the incident infrared radiation. Unfortunately the performance of these detectors deteriorates for longer wavelengths, leaving the detection of, for instance, millimetre-wave radiation to expensive approaches. We propose here a simple and effective method to enhance pyroelectric detection of the millimetre-wave radiation by combining a compact commercial infrared pyro-sensor with a metasurface-enabled ultra-thin absorber, which provides spectrally- and polarization-discriminated response and is 136 times thinner than the operating wavelength. It is demonstrated that, due to the small thickness and therefore the thermal capacity of the absorber, the detector keeps the high response speed and sensitivity to millimetre waves as the original infrared pyrosensor does against the regime of infrared detection. An in-depth electromagnetic analysis of the ultrathin resonant absorbers along with their complex characterization by a BWO-spectroscopy technique is presented. Built upon this initial study, integrated metasurface absorber pyroelectric sensors are implemented and tested experimentally, showing high sensitivity and very fast response to millimetrewave radiation. The proposed approach paves the way for creating highly-efficient inexpensive compact sensors for spectro-polarimetric applications in the millimetre-wave and terahertz bands.",
keywords = "Pyroelectric, Metasurface, Absorber, Millimeter wave devices",
author = "Kuznetsov, {Sergei A.} and Paulish, {Andrey G.} and Miguel Navarro-Cia and Arzhannikov, {A. V.}",
year = "2016",
month = feb,
day = "16",
doi = "10.1038/srep21079",
language = "English",
volume = "6",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",

}

RIS

TY - JOUR

T1 - Selective Pyroelectric Detection of Millimetre Waves Using Ultra-Thin Metasurface Absorbers

AU - Kuznetsov, Sergei A.

AU - Paulish, Andrey G.

AU - Navarro-Cia, Miguel

AU - Arzhannikov, A. V.

PY - 2016/2/16

Y1 - 2016/2/16

N2 - Sensing infrared radiation is done inexpensively with pyroelectric detectors that generate a temporary voltage when they are heated by the incident infrared radiation. Unfortunately the performance of these detectors deteriorates for longer wavelengths, leaving the detection of, for instance, millimetre-wave radiation to expensive approaches. We propose here a simple and effective method to enhance pyroelectric detection of the millimetre-wave radiation by combining a compact commercial infrared pyro-sensor with a metasurface-enabled ultra-thin absorber, which provides spectrally- and polarization-discriminated response and is 136 times thinner than the operating wavelength. It is demonstrated that, due to the small thickness and therefore the thermal capacity of the absorber, the detector keeps the high response speed and sensitivity to millimetre waves as the original infrared pyrosensor does against the regime of infrared detection. An in-depth electromagnetic analysis of the ultrathin resonant absorbers along with their complex characterization by a BWO-spectroscopy technique is presented. Built upon this initial study, integrated metasurface absorber pyroelectric sensors are implemented and tested experimentally, showing high sensitivity and very fast response to millimetrewave radiation. The proposed approach paves the way for creating highly-efficient inexpensive compact sensors for spectro-polarimetric applications in the millimetre-wave and terahertz bands.

AB - Sensing infrared radiation is done inexpensively with pyroelectric detectors that generate a temporary voltage when they are heated by the incident infrared radiation. Unfortunately the performance of these detectors deteriorates for longer wavelengths, leaving the detection of, for instance, millimetre-wave radiation to expensive approaches. We propose here a simple and effective method to enhance pyroelectric detection of the millimetre-wave radiation by combining a compact commercial infrared pyro-sensor with a metasurface-enabled ultra-thin absorber, which provides spectrally- and polarization-discriminated response and is 136 times thinner than the operating wavelength. It is demonstrated that, due to the small thickness and therefore the thermal capacity of the absorber, the detector keeps the high response speed and sensitivity to millimetre waves as the original infrared pyrosensor does against the regime of infrared detection. An in-depth electromagnetic analysis of the ultrathin resonant absorbers along with their complex characterization by a BWO-spectroscopy technique is presented. Built upon this initial study, integrated metasurface absorber pyroelectric sensors are implemented and tested experimentally, showing high sensitivity and very fast response to millimetrewave radiation. The proposed approach paves the way for creating highly-efficient inexpensive compact sensors for spectro-polarimetric applications in the millimetre-wave and terahertz bands.

KW - Pyroelectric

KW - Metasurface

KW - Absorber

KW - Millimeter wave devices

U2 - 10.1038/srep21079

DO - 10.1038/srep21079

M3 - Article

C2 - 26879250

VL - 6

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

M1 - 21079

ER -