River temperature research and practice: Recent challenges and emerging opportunities for managing thermal habitat conditions in stream ecosystems

Research output: Contribution to journalReview article

Authors

External organisations

  • INRS Eau Terre Environnement
  • Canadian River Institute
  • University of Nottingham

Abstract

There is growing evidence that river temperatures are increasing under climate change, which is expected to be exacerbated by increased abstractions to satisfy human water demands. Water temperature research has experienced crucial advances, both in terms of developing new monitoring and modelling tools, as well as understanding the mechanisms of temperature feedbacks with biogeochemical and ecological processes. However, water practitioners and regulators are challenged with translating the widespread and complex technological, modelling and conceptual advances made in river temperature research into improvements in management practice. This critical review provides a comprehensive overview of recent advances in the state-of-the-art monitoring and modelling tools available to inform ecological research and practice. In so doing, we identify pressing research gaps and suggest paths forward to address practical research and management challenges. The proposed research directions aim to provide new insights into spatio-temporal stream temperature dynamics and unravel drivers and controls of thermal river regimes, including the impacts of changing temperature on metabolism and aquatic biogeochemistry, as well as aquatic organisms. The findings of this review inform future research into ecosystem resilience in the face of thermal degradation and support the development of new management strategies cutting across spatial and temporal scales.

Details

Original languageEnglish
Article number139679
JournalScience of the Total Environment
Volume736
Publication statusPublished - 20 Sep 2020

Keywords

  • Ecological processes, Modelling, Monitoring, Research directions, Sensing, Thermal dynamics