Retinoid-mediated stimulation of steroid sulfatase activity in myeloid leukemic cell lines requires RARα and RXR and involves the phosphoinositide 3-kinase and ERK-MAP kinase pathways

Research output: Contribution to journalArticle

Standard

Harvard

APA

Vancouver

Author

Bibtex

@article{5611260fc52348d89ba5429fcab0224b,
title = "Retinoid-mediated stimulation of steroid sulfatase activity in myeloid leukemic cell lines requires RARα and RXR and involves the phosphoinositide 3-kinase and ERK-MAP kinase pathways",
abstract = "All-trans retinoic acid and 9-cis-retinoic acid stimulate the activity of steroid sulfatase in HL60 acute myeloid leukemia cells in a concentration- and time-dependent manner. Neither of these 'natural retinoids' augmented steroid sulfatase activity in a HL60 sub-line that expresses a dominant-negative retinoic acid receptor alpha (RARalpha). Experiments with synthetic RAR and RXR agonists and antagonists suggest that RARalpha/RXR heterodimers play a role in the retinoid-stimulated increase in steroid sulfatase activity. The retinoid-driven increase in steroid sulfatase activity was attenuated by inhibition of phospholipase D (PLD), but not by inhibitors of phospholipase C. Experiments with inhibitors of protein kinase C (PKC) show that PKCalpha and PKCdelta play an important role in modulating the retinoid-stimulation of steroid sulfatase activity in HL60 cells. Furthermore, we show that pharmacological inhibition of the RAF-1 and ERK MAP kinases blocked the retinoid-stimulated increase in steroid sulfatase activity in HL60 cells and, by contrast, inhibition of the p38-MAP kinase or JNK-MAP kinase had no effect. Pharmacological inhibitors of the phosphatidylinositol 3-kinase, Akt, and PDK-1 also abrogated the retinoid-stimulated increase in steroid sulfatase activity in HL60 cells. These results show that crosstalk between the retinoid-stimulated genomic and non-genomic pathways is necessary to increase steroid sulfatase activity in HL60 cells.",
keywords = "steroid sulfatase, genomic and non-genomic signaling, myeloid cells, retinoid receptors",
author = "Philip Hughes and Yan Zhao and RA Chandraratna and Geoffrey Brown",
year = "2006",
month = feb,
day = "1",
doi = "10.1002/jcb.20579",
language = "English",
volume = "97",
pages = "327--50",
journal = "Journal of Cellular Biochemistry",
issn = "0730-2312",
publisher = "Wiley",
number = "2",

}

RIS

TY - JOUR

T1 - Retinoid-mediated stimulation of steroid sulfatase activity in myeloid leukemic cell lines requires RARα and RXR and involves the phosphoinositide 3-kinase and ERK-MAP kinase pathways

AU - Hughes, Philip

AU - Zhao, Yan

AU - Chandraratna, RA

AU - Brown, Geoffrey

PY - 2006/2/1

Y1 - 2006/2/1

N2 - All-trans retinoic acid and 9-cis-retinoic acid stimulate the activity of steroid sulfatase in HL60 acute myeloid leukemia cells in a concentration- and time-dependent manner. Neither of these 'natural retinoids' augmented steroid sulfatase activity in a HL60 sub-line that expresses a dominant-negative retinoic acid receptor alpha (RARalpha). Experiments with synthetic RAR and RXR agonists and antagonists suggest that RARalpha/RXR heterodimers play a role in the retinoid-stimulated increase in steroid sulfatase activity. The retinoid-driven increase in steroid sulfatase activity was attenuated by inhibition of phospholipase D (PLD), but not by inhibitors of phospholipase C. Experiments with inhibitors of protein kinase C (PKC) show that PKCalpha and PKCdelta play an important role in modulating the retinoid-stimulation of steroid sulfatase activity in HL60 cells. Furthermore, we show that pharmacological inhibition of the RAF-1 and ERK MAP kinases blocked the retinoid-stimulated increase in steroid sulfatase activity in HL60 cells and, by contrast, inhibition of the p38-MAP kinase or JNK-MAP kinase had no effect. Pharmacological inhibitors of the phosphatidylinositol 3-kinase, Akt, and PDK-1 also abrogated the retinoid-stimulated increase in steroid sulfatase activity in HL60 cells. These results show that crosstalk between the retinoid-stimulated genomic and non-genomic pathways is necessary to increase steroid sulfatase activity in HL60 cells.

AB - All-trans retinoic acid and 9-cis-retinoic acid stimulate the activity of steroid sulfatase in HL60 acute myeloid leukemia cells in a concentration- and time-dependent manner. Neither of these 'natural retinoids' augmented steroid sulfatase activity in a HL60 sub-line that expresses a dominant-negative retinoic acid receptor alpha (RARalpha). Experiments with synthetic RAR and RXR agonists and antagonists suggest that RARalpha/RXR heterodimers play a role in the retinoid-stimulated increase in steroid sulfatase activity. The retinoid-driven increase in steroid sulfatase activity was attenuated by inhibition of phospholipase D (PLD), but not by inhibitors of phospholipase C. Experiments with inhibitors of protein kinase C (PKC) show that PKCalpha and PKCdelta play an important role in modulating the retinoid-stimulation of steroid sulfatase activity in HL60 cells. Furthermore, we show that pharmacological inhibition of the RAF-1 and ERK MAP kinases blocked the retinoid-stimulated increase in steroid sulfatase activity in HL60 cells and, by contrast, inhibition of the p38-MAP kinase or JNK-MAP kinase had no effect. Pharmacological inhibitors of the phosphatidylinositol 3-kinase, Akt, and PDK-1 also abrogated the retinoid-stimulated increase in steroid sulfatase activity in HL60 cells. These results show that crosstalk between the retinoid-stimulated genomic and non-genomic pathways is necessary to increase steroid sulfatase activity in HL60 cells.

KW - steroid sulfatase

KW - genomic and non-genomic signaling

KW - myeloid cells

KW - retinoid receptors

U2 - 10.1002/jcb.20579

DO - 10.1002/jcb.20579

M3 - Article

C2 - 16178010

VL - 97

SP - 327

EP - 350

JO - Journal of Cellular Biochemistry

JF - Journal of Cellular Biochemistry

SN - 0730-2312

IS - 2

ER -