RASSF2 associates with and stabilizes the proapoptotic kinase MST2.

Research output: Contribution to journalArticle

Standard

RASSF2 associates with and stabilizes the proapoptotic kinase MST2. / Cooper, WN; Hesson, LB; Matallanas, D; Dallol, Ashraf; von Kriegsheim, A; Ward, R; Kolch, W; Latif, Farida.

In: Oncogene, Vol. 28, No. 33, 15.06.2009, p. 2988-2998.

Research output: Contribution to journalArticle

Harvard

Cooper, WN, Hesson, LB, Matallanas, D, Dallol, A, von Kriegsheim, A, Ward, R, Kolch, W & Latif, F 2009, 'RASSF2 associates with and stabilizes the proapoptotic kinase MST2.', Oncogene, vol. 28, no. 33, pp. 2988-2998. https://doi.org/10.1038/onc.2009.152

APA

Cooper, WN., Hesson, LB., Matallanas, D., Dallol, A., von Kriegsheim, A., Ward, R., Kolch, W., & Latif, F. (2009). RASSF2 associates with and stabilizes the proapoptotic kinase MST2. Oncogene, 28(33), 2988-2998. https://doi.org/10.1038/onc.2009.152

Vancouver

Cooper WN, Hesson LB, Matallanas D, Dallol A, von Kriegsheim A, Ward R et al. RASSF2 associates with and stabilizes the proapoptotic kinase MST2. Oncogene. 2009 Jun 15;28(33):2988-2998. https://doi.org/10.1038/onc.2009.152

Author

Cooper, WN ; Hesson, LB ; Matallanas, D ; Dallol, Ashraf ; von Kriegsheim, A ; Ward, R ; Kolch, W ; Latif, Farida. / RASSF2 associates with and stabilizes the proapoptotic kinase MST2. In: Oncogene. 2009 ; Vol. 28, No. 33. pp. 2988-2998.

Bibtex

@article{b7641e7a4e79455c989d5d4a858eef7c,
title = "RASSF2 associates with and stabilizes the proapoptotic kinase MST2.",
abstract = "RASSF2 is a tumour suppressor that in common with the rest of the RASSF family contains Ras association and SARAH domains. We identified the proapoptotic kinases, MST1 and MST2, as the most significant binding partners of RASSF2, confirmed the interactions at endogenous levels and showed that RASSF2 immunoprecipitates active MST1/2. We then showed that RASSF2 can be phosphorylated by a co-immunoprecipitating kinase that is likely to be MST1/2. Furthermore, we showed that RASSF2 and MST2 do indeed colocalize, but whereas RASSF2 alone is nuclear, the presence of MST1 or MST2 results in colocalization in the cytoplasm. Expression of RASSF2 (stably in MCF7 or transiently in HEK-293) increases MST2 levels and knockdown of RASSF2 in HEK-293 cells reduces MST2 levels, in addition colorectal tumour cell lines and primary tumours with low RASSF2 levels show decreased MST2 protein levels. This is likely to be mediated by RASSF2-dependent protection of MST2 against proteolytic degradation. Our findings suggest that MST2 and RASSF2 form an active complex in vivo, in which RASSF2 is maintained in a phosphorylated state and protects MST2 from degradation and turnover. Thus, we propose that the frequent loss of RASSF2 in tumours results in the destablization of MST2 and thus decreased apoptotic potential.Oncogene advance online publication, 15 June 2009; doi:10.1038/onc.2009.152.",
keywords = "epigenetics, RASSF2, MST1, proteomics, MST2",
author = "WN Cooper and LB Hesson and D Matallanas and Ashraf Dallol and {von Kriegsheim}, A and R Ward and W Kolch and Farida Latif",
year = "2009",
month = jun,
day = "15",
doi = "10.1038/onc.2009.152",
language = "English",
volume = "28",
pages = "2988--2998",
journal = "Oncogene",
issn = "0950-9232",
publisher = "Nature Publishing Group",
number = "33",

}

RIS

TY - JOUR

T1 - RASSF2 associates with and stabilizes the proapoptotic kinase MST2.

AU - Cooper, WN

AU - Hesson, LB

AU - Matallanas, D

AU - Dallol, Ashraf

AU - von Kriegsheim, A

AU - Ward, R

AU - Kolch, W

AU - Latif, Farida

PY - 2009/6/15

Y1 - 2009/6/15

N2 - RASSF2 is a tumour suppressor that in common with the rest of the RASSF family contains Ras association and SARAH domains. We identified the proapoptotic kinases, MST1 and MST2, as the most significant binding partners of RASSF2, confirmed the interactions at endogenous levels and showed that RASSF2 immunoprecipitates active MST1/2. We then showed that RASSF2 can be phosphorylated by a co-immunoprecipitating kinase that is likely to be MST1/2. Furthermore, we showed that RASSF2 and MST2 do indeed colocalize, but whereas RASSF2 alone is nuclear, the presence of MST1 or MST2 results in colocalization in the cytoplasm. Expression of RASSF2 (stably in MCF7 or transiently in HEK-293) increases MST2 levels and knockdown of RASSF2 in HEK-293 cells reduces MST2 levels, in addition colorectal tumour cell lines and primary tumours with low RASSF2 levels show decreased MST2 protein levels. This is likely to be mediated by RASSF2-dependent protection of MST2 against proteolytic degradation. Our findings suggest that MST2 and RASSF2 form an active complex in vivo, in which RASSF2 is maintained in a phosphorylated state and protects MST2 from degradation and turnover. Thus, we propose that the frequent loss of RASSF2 in tumours results in the destablization of MST2 and thus decreased apoptotic potential.Oncogene advance online publication, 15 June 2009; doi:10.1038/onc.2009.152.

AB - RASSF2 is a tumour suppressor that in common with the rest of the RASSF family contains Ras association and SARAH domains. We identified the proapoptotic kinases, MST1 and MST2, as the most significant binding partners of RASSF2, confirmed the interactions at endogenous levels and showed that RASSF2 immunoprecipitates active MST1/2. We then showed that RASSF2 can be phosphorylated by a co-immunoprecipitating kinase that is likely to be MST1/2. Furthermore, we showed that RASSF2 and MST2 do indeed colocalize, but whereas RASSF2 alone is nuclear, the presence of MST1 or MST2 results in colocalization in the cytoplasm. Expression of RASSF2 (stably in MCF7 or transiently in HEK-293) increases MST2 levels and knockdown of RASSF2 in HEK-293 cells reduces MST2 levels, in addition colorectal tumour cell lines and primary tumours with low RASSF2 levels show decreased MST2 protein levels. This is likely to be mediated by RASSF2-dependent protection of MST2 against proteolytic degradation. Our findings suggest that MST2 and RASSF2 form an active complex in vivo, in which RASSF2 is maintained in a phosphorylated state and protects MST2 from degradation and turnover. Thus, we propose that the frequent loss of RASSF2 in tumours results in the destablization of MST2 and thus decreased apoptotic potential.Oncogene advance online publication, 15 June 2009; doi:10.1038/onc.2009.152.

KW - epigenetics

KW - RASSF2

KW - MST1

KW - proteomics

KW - MST2

U2 - 10.1038/onc.2009.152

DO - 10.1038/onc.2009.152

M3 - Article

C2 - 19525978

VL - 28

SP - 2988

EP - 2998

JO - Oncogene

JF - Oncogene

SN - 0950-9232

IS - 33

ER -