Quinolone resistance in Escherichia coli

Mark Webber, Laura Piddock

Research output: Contribution to journalReview article

Abstract

Escherichia coli is an important pathogen of animals and humans that causes great financial cost in food production by causing disease in food animals. The quinolones are a class of synthetic antimicrobial agents with excellent activity against Escherichia coli and other Gram-negative bacteria used in human and veterinary medicine. Different quinolones are used to treat various conditions in animals in different parts of the world. All members of this class of drug have the same mode of action: inhibition of topoisomerase enzymes, DNA Gyrase and Topoisomerase IV. Escherichia coli can become resistant to quinolones by altering the target enzymes, reducing permeability of the cell to inhibit their entry, or by actively pumping the drug out of the cell. All these resistance mechanisms can play a role in high-level fluoroquinolone resistance, however target site mutations appear to be most important. As all quinolones act in the same way resistance to one member of the class will also confer decreased susceptibility to all members of the family. Quinolone resistant Escherichia coli in animals have increased in numbers after quinolone introduction in a number of different case studies. The resistance mechanisms in these isolates are the same as those in resistant strains found in humans. Care needs to be taken to ensure that quinolones are used sparingly and appropriately as highly resistant strains of Escherichia coli can be selected and may pass into the food chain. As these drugs are of major therapeutic importance in human medicine, this is a public health concern. More information as to the numbers of quinolone resistant Escherichia coli and the relationship between resistance and quinolone use is needed to allow us to make better informed decisions about when and when not to use quinolones in the treatment of animals.
Original languageEnglish
Pages (from-to)275-84
Number of pages10
JournalVeterinary Research
Volume32
DOIs
Publication statusPublished - 1 Jan 2001

Fingerprint

Dive into the research topics of 'Quinolone resistance in Escherichia coli'. Together they form a unique fingerprint.

Cite this