QuantCrit: education policy, ‘Big Data’ and principles for a critical race theory of statistics

Research output: Contribution to journalArticle

Authors

External organisations

  • Sheffield Hallam Univ
  • University of Warwick

Abstract

Quantitative research enjoys heightened esteem among policy-makers, media and the general public. Whereas qualitative research is frequently dismissed as subjective and impressionistic, statistics are often assumed to be objective and factual. We argue that these distinctions are wholly false; quantitative data is no less socially constructed than any other form of research material. The first part of the paper presents a conceptual critique of the field with empirical examples that expose and challenge hidden assumptions that frequently encode racist perspectives beneath the façade of supposed quantitative objectivity. The second part of the paper draws on the tenets of Critical Race Theory (CRT) to set out some principles to guide the future use and analysis of quantitative data. These ‘QuantCrit’ ideas concern (1) the centrality of racism as a complex and deeply-rooted aspect of society that is not readily amenable to quantification; (2) numbers are not neutral and should be interrogated for their role in promoting deficit analyses that serve White racial interests; (3) categories are neither ‘natural’ nor given and so the units and forms of analysis must be critically evaluated; (4) voice and insight are vital: data cannot ‘speak for itself’ and critical analyses should be informed by the experiential knowledge of marginalized groups; (5) statistical analyses have no inherent value but can play a role in struggles for social justice.

Details

Original languageEnglish
Pages (from-to)158-179
Number of pages22
JournalRace Ethnicity and Education
Volume21
Issue number2
Early online date27 Sep 2017
Publication statusPublished - 18 Dec 2017

Keywords

  • critical race theory , quantitative research methods , statistics , race , racism , education policy , Big Data.