Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles

Houshang Amiri*, Lorenzo Bordonali, Alessandro Lascialfari, Sha Wan, Marco P. Monopoli, Iseult Lynch, Sophie Laurent, Morteza Mahmoudi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

76 Citations (Scopus)

Abstract

Magnetic nanoparticles (NPs) are increasingly being considered for use in biomedical applications such as biosensors, imaging contrast agents and drug delivery vehicles. In a biological fluid, proteins associate in a preferential manner with NPs. The small sizes and high curvature angles of NPs influence the types and amounts of proteins present on their surfaces. This differential display of proteins bound to the surface of NPs can influence the tissue distribution, cellular uptake and biological effects of NPs. To date, the effects of adsorption of a protein corona (PC) on the magnetic properties of NPs have not been considered, despite the fact that some of their potential applications require their use in human blood. Here, to investigate the effects of a PC (using fetal bovine serum) on the MRI contrast efficiency of superparamagnetic iron oxide NPs (SPIONs), we have synthesized two series of SPIONs with variation in the thickness and functional groups (i.e. surface charges) of the dextran surface coating. We have observed that different physico-chemical characteristics of the dextran coatings on the SPIONs lead to the formation of PCs of different compositions. 1H relaxometry was used to obtain the longitudinal, r1, and transverse, r2, relaxivities of the SPIONs without and with a PC, as a function of the Larmor frequency. The transverse relaxivity, which determines the efficiency of negative contrast agents (CAs), is very much dependent on the functional group and the surface charge of the SPIONs' coating. The presence of the PC did not alter the relaxivity of plain SPIONs, while it slightly increased the relaxivity of the negatively charged SPIONs and dramatically decreased the relaxivity of the positively charged ones, which was coupled with particle agglomeration in the presence of the proteins. To confirm the effect of the PC on the MRI contrast efficiency, in vitro MRI experiments at ν = 8.5 MHz were performed using a low-field MRI scanner. The MRI contrasts, produced by different samples, were fully in agreement with the relaxometry findings.

Original languageEnglish
Pages (from-to)8656-8665
Number of pages10
JournalNanoscale
Volume5
Issue number18
DOIs
Publication statusPublished - 21 Sept 2013

ASJC Scopus subject areas

  • Materials Science(all)

Fingerprint

Dive into the research topics of 'Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles'. Together they form a unique fingerprint.

Cite this