Planar holographic metasurfaces for terahertz focusing

Research output: Contribution to journalArticlepeer-review


Colleges, School and Institutes

External organisations

  • Novosibirsk Branch TDIAM
  • Budker Institute of Nuclear Physics SB RAS
  • Universidad Pública de Navarra


Scientists and laymen alike have always been fascinated by the ability of lenses and mirrors to control light. Now, with the advent of metamaterials and their two-dimensional counterpart metasurfaces, such components can be miniaturized and designed with additional functionalities, holding promise for system integration. To demonstrate this potential, here ultrathin reflection metasurfaces (also called metamirrors) designed for focusing terahertz radiation into a single spot and four spaced spots are proposed and experimentally investigated at the frequency of 0.35 THz. Each metasurface is designed using a computer-generated spatial distribution of the reflection phase. The phase variation within 360 deg is achieved via a topological morphing of the metasurface pattern from metallic patches to U-shaped and split-ring resonator elements, whose spectral response is derived from full-wave electromagnetic simulations. The proposed approach demonstrates a high-performance solution for creating low-cost and lightweight beam-shaping and beam-focusing devices for the terahertz band.


Original languageEnglish
Article number7738
JournalScientific Reports
Publication statusPublished - 13 Jan 2015

ASJC Scopus subject areas