Persistent hepatitis C virus infection in vitro: Coevolution of virus and host

J Zhong, P Gastaminza, J Chung, Zacharenia Stamataki, M Isogawa, G Cheng, Jane McKeating, FV Chisari

Research output: Contribution to journalArticlepeer-review

204 Citations (Scopus)
198 Downloads (Pure)

Abstract

The virological and cellular consequences of persistent hepatitis C virus (HCV) infection have been elusive due to the absence of the requisite experimental systems. Here, we report the establishment and the characteristics of persistent in vitro infection of human hepatoma-derived cells by a recently described HCV genotype 2a infectious molecular clone. Persistent in vitro infection was characterized by the selection of viral variants that displayed accelerated expansion kinetics, higher peak titers, and increased buoyant densities. Sequencing analysis revealed the selection of a single adaptive mutation in the HCV E2 envelope protein that was largely responsible for the variant phenotype. In parallel, as the virus became more aggressive, cells that were resistant to infection emerged, displaying escape mechanisms operative at the level of viral entry, HCV RNA replication, or both. Collectively, these results reveal the existence of coevolutionary events during persistent HCV infection that favor survival of both virus and host.
Original languageEnglish
Pages (from-to)11082-11093
Number of pages12
JournalJournal of virology
Volume80
Issue number22
DOIs
Publication statusPublished - 1 Nov 2006

Fingerprint

Dive into the research topics of 'Persistent hepatitis C virus infection in vitro: Coevolution of virus and host'. Together they form a unique fingerprint.

Cite this