On integer images of max-plus linear mappings
Research output: Contribution to journal › Article › peer-review
Authors
Colleges, School and Institutes
Abstract
Let us extend the pair of operations (max,+) over real numbers to matrices in the same way as in conventional linear algebra.
We study integer images of max-plus linear mappings. The question whether Ax (in the max-plus algebra) is an integer vector for at least one x has been studied for some time but polynomial solution methods seem to exist only in special cases. In the terminology of combinatorial matrix theory this question reads: is it possible to add constants to the columns of a given matrix so that all row maxima are integer? This problem has been motivated by attempts to solve a class of job-scheduling problems.
We present two polynomially solvable special cases aiming to move closer to a polynomial solution method in the general case.
We study integer images of max-plus linear mappings. The question whether Ax (in the max-plus algebra) is an integer vector for at least one x has been studied for some time but polynomial solution methods seem to exist only in special cases. In the terminology of combinatorial matrix theory this question reads: is it possible to add constants to the columns of a given matrix so that all row maxima are integer? This problem has been motivated by attempts to solve a class of job-scheduling problems.
We present two polynomially solvable special cases aiming to move closer to a polynomial solution method in the general case.
Details
Original language | English |
---|---|
Pages (from-to) | 62-74 |
Journal | Discrete Applied Mathematics |
Volume | 239 |
Early online date | 1 Feb 2018 |
Publication status | Published - 20 Apr 2018 |
Keywords
- max-linear mapping, integer image, computational complexity