Numerical investigations on flow boiling heat transfer of ammonia water binary solution (NH3/H2O) in a horizontal microchannel

Research output: Contribution to journalArticlepeer-review

Authors

Colleges, School and Institutes

Abstract

The flow boiling heat transfer characteristics of NH3/H2O mixture in a 2D single horizontal microchannel (0.4 mm width × 6 mm length) were investigated by Computational Fluid Dynamics (CFD) method. The multiphase VOF model and modified phase change Lee method were adopted to address the non-isothermal phase change process of the flowing zeotropic NH3/H2O mixture, while the variations of the binary mixture thermophysical properties were also taken into account. The effects of mass flux (46~552 kg/(m2∙K)), inlet NH3 concentration (0-35% by mole) and heating wall temperature (20.5~70 C) on the overall and local flow boiling heat transfer performance have been comparatively evaluated under constant heating wall temperatures. According to the numerical results, the heat dissipation rate of NH3/H2O mixture flow boiling could reach up to 1.41 MW/m2 at a mass flux of 552 kg/(m2∙s), which was 2.05 times of water single-phase flow cooling under a same constant heating wall temperature of 50 C. It was also revealed that, for NH3/H2O mixture flow boiling in the microchannel, there was a threshold of inlet NH3 concentration to maintain a certain level of heat dissipation rate at a given mass flow rate and further increasing the inlet NH3 concentration would no longer benefit the heat dissipation process. Furthermore, there were no local dry-outs found throughout the whole microchannel length under all the simulation conditions in this study, which could be attributed to the unique flow boiling behaviors of zeotropic NH3/H2O mixture. Therefore, it should be noticed that NH3/H2O mixture, under certain conditions, could be a good alternative coolant for preventing local dry-outs and maintaining a certain functional temperature of electronic components.

Bibliographic note

Funding Information: The authors would like to acknowledge the financial support of the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom (Grant Nos. EP/N000714/1 and EP/N021142/1).

Details

Original languageEnglish
Article number121091
Number of pages13
JournalInternational Journal of Heat and Mass Transfer
Volume171
Issue number121091
Early online date19 Feb 2021
Publication statusPublished - Jun 2021

Keywords

  • flow boiling heat transfer, microchannel, zeotropic NH3/H2O mixture, numerical simulation