Novel key parameter for eutectic nitrates based nanofluids selection for concentrating solar power (CSP) system

Research output: Contribution to journalArticlepeer-review

Authors

  • Anabel Palacios
  • Xianzhang Lei
  • Geng Qiao
  • Ernesto Mura
  • Guizhi Xu

Colleges, School and Institutes

Abstract

A high-performance heat transfer fluid (HTF) plays a crucial role in the overall performance and efficiency of the concentrating solar power (CSP) systems for utilizing solar energy. Molten salt-based nanofluids, which may offer a promising solution to help reduce the size and cost of CSP system, have attracted increasing attention. However, there is still no comprehensive assessment strategy that considers the conflictive effects of adding nanoparticles in HTFs, such as the compromise between energy storage capacity increase and pumping cost increase. In this work, a methodology for nanofluids screening and selection is proposed and a novel parameter (R) is determined to assess the conflictive effect. The parameter (R) indicates the relative pumping cost per unit stored energy of the nanofluid compared to its base fluid. Three promising eutectics nitrate based nanofluids (NaNO3–KNO3, LiNO3–NaNO3–KNO3, LiNO3–NaNO3–KNO3–Ca(NO3)2) doping with 0.5 wt.% and 1 wt.% silica nanoparticles were selected and evaluated by the proposed methodology. As a result, adding nanoparticles into binary salts always present a negative effect (R = 1.03–1.22) when considering the relative pumping cost for per unit energy. For ternary salt, adding 1 wt.% silica nanoparticles would be more preferable with a decrease of the parameter (R = 0.89–0.97, R < 1). In terms of quaternary, adding nanoparticles into quaternary does not change the parameter significantly (R = 0.96–1.04).

Details

Original languageEnglish
Pages (from-to)529-542
Number of pages14
JournalApplied Energy
Volume235
Early online date9 Nov 2018
Publication statusPublished - 1 Feb 2019

Keywords

  • Heat transfer fluids, High temperature, Molten salt, Nanofluids, Rheological behaviour, Specific heat