Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots

Research output: Contribution to journalArticlepeer-review

Standard

Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. / Pärn, Jaan; Verhoeven, Jos T. A.; Butterbach-bahl, Klaus; Dise, Nancy B.; Ullah, Sami; Aasa, Anto; Egorov, Sergey; Espenberg, Mikk; Järveoja, Järvi; Jauhiainen, Jyrki; Kasak, Kuno; Klemedtsson, Leif; Kull, Ain; Laggoun-défarge, Fatima; Lapshina, Elena D.; Lohila, Annalea; Lõhmus, Krista; Maddison, Martin; Mitsch, William J.; Müller, Christoph; Niinemets, Ülo; Osborne, Bruce; Pae, Taavi; Salm, Jüri-ott; Sgouridis, Fotis; Sohar, Kristina; Soosaar, Kaido; Storey, Kathryn; Teemusk, Alar; Tenywa, Moses M.; Tournebize, Julien; Truu, Jaak; Veber, Gert; Villa, Jorge A.; Zaw, Seint Sann; Mander, Ülo.

In: Nature Communications, Vol. 9, 1135, 19.03.2018.

Research output: Contribution to journalArticlepeer-review

Harvard

Pärn, J, Verhoeven, JTA, Butterbach-bahl, K, Dise, NB, Ullah, S, Aasa, A, Egorov, S, Espenberg, M, Järveoja, J, Jauhiainen, J, Kasak, K, Klemedtsson, L, Kull, A, Laggoun-défarge, F, Lapshina, ED, Lohila, A, Lõhmus, K, Maddison, M, Mitsch, WJ, Müller, C, Niinemets, Ü, Osborne, B, Pae, T, Salm, J, Sgouridis, F, Sohar, K, Soosaar, K, Storey, K, Teemusk, A, Tenywa, MM, Tournebize, J, Truu, J, Veber, G, Villa, JA, Zaw, SS & Mander, Ü 2018, 'Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots', Nature Communications, vol. 9, 1135. https://doi.org/10.1038/s41467-018-03540-1

APA

Pärn, J., Verhoeven, J. T. A., Butterbach-bahl, K., Dise, N. B., Ullah, S., Aasa, A., Egorov, S., Espenberg, M., Järveoja, J., Jauhiainen, J., Kasak, K., Klemedtsson, L., Kull, A., Laggoun-défarge, F., Lapshina, E. D., Lohila, A., Lõhmus, K., Maddison, M., Mitsch, W. J., ... Mander, Ü. (2018). Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nature Communications, 9, [1135]. https://doi.org/10.1038/s41467-018-03540-1

Vancouver

Author

Pärn, Jaan ; Verhoeven, Jos T. A. ; Butterbach-bahl, Klaus ; Dise, Nancy B. ; Ullah, Sami ; Aasa, Anto ; Egorov, Sergey ; Espenberg, Mikk ; Järveoja, Järvi ; Jauhiainen, Jyrki ; Kasak, Kuno ; Klemedtsson, Leif ; Kull, Ain ; Laggoun-défarge, Fatima ; Lapshina, Elena D. ; Lohila, Annalea ; Lõhmus, Krista ; Maddison, Martin ; Mitsch, William J. ; Müller, Christoph ; Niinemets, Ülo ; Osborne, Bruce ; Pae, Taavi ; Salm, Jüri-ott ; Sgouridis, Fotis ; Sohar, Kristina ; Soosaar, Kaido ; Storey, Kathryn ; Teemusk, Alar ; Tenywa, Moses M. ; Tournebize, Julien ; Truu, Jaak ; Veber, Gert ; Villa, Jorge A. ; Zaw, Seint Sann ; Mander, Ülo. / Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. In: Nature Communications. 2018 ; Vol. 9.

Bibtex

@article{dc6519fb28d74fadb608d15e4bc60709,
title = "Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots",
abstract = "Nitrous oxide (N2O) is a powerful greenhouse gas and the main driver of stratospheric ozone depletion. Since soils are the largest source of N2O, predicting soil response to changes in climate or land use is central to understanding and managing N2O. Here we find that N2O flux can be predicted by models incorporating soil nitrate concentration (NO3−), water content and temperature using a global field survey of N2O emissions and potential driving factors across a wide range of organic soils. N2O emissions increase with NO3− and follow a bell-shaped distribution with water content. Combining the two functions explains 72% of N2O emission from all organic soils. Above 5 mg NO3−-N kg−1, either draining wet soils or irrigating well-drained soils increases N2O emission by orders of magnitude. As soil temperature together with NO3− explains 69% of N2O emission, tropical wetlands should be a priority for N2O management.",
keywords = "element cycles",
author = "Jaan P{\"a}rn and Verhoeven, {Jos T. A.} and Klaus Butterbach-bahl and Dise, {Nancy B.} and Sami Ullah and Anto Aasa and Sergey Egorov and Mikk Espenberg and J{\"a}rvi J{\"a}rveoja and Jyrki Jauhiainen and Kuno Kasak and Leif Klemedtsson and Ain Kull and Fatima Laggoun-d{\'e}farge and Lapshina, {Elena D.} and Annalea Lohila and Krista L{\~o}hmus and Martin Maddison and Mitsch, {William J.} and Christoph M{\"u}ller and {\"U}lo Niinemets and Bruce Osborne and Taavi Pae and J{\"u}ri-ott Salm and Fotis Sgouridis and Kristina Sohar and Kaido Soosaar and Kathryn Storey and Alar Teemusk and Tenywa, {Moses M.} and Julien Tournebize and Jaak Truu and Gert Veber and Villa, {Jorge A.} and Zaw, {Seint Sann} and {\"U}lo Mander",
year = "2018",
month = mar,
day = "19",
doi = "10.1038/s41467-018-03540-1",
language = "English",
volume = "9",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Springer",

}

RIS

TY - JOUR

T1 - Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots

AU - Pärn, Jaan

AU - Verhoeven, Jos T. A.

AU - Butterbach-bahl, Klaus

AU - Dise, Nancy B.

AU - Ullah, Sami

AU - Aasa, Anto

AU - Egorov, Sergey

AU - Espenberg, Mikk

AU - Järveoja, Järvi

AU - Jauhiainen, Jyrki

AU - Kasak, Kuno

AU - Klemedtsson, Leif

AU - Kull, Ain

AU - Laggoun-défarge, Fatima

AU - Lapshina, Elena D.

AU - Lohila, Annalea

AU - Lõhmus, Krista

AU - Maddison, Martin

AU - Mitsch, William J.

AU - Müller, Christoph

AU - Niinemets, Ülo

AU - Osborne, Bruce

AU - Pae, Taavi

AU - Salm, Jüri-ott

AU - Sgouridis, Fotis

AU - Sohar, Kristina

AU - Soosaar, Kaido

AU - Storey, Kathryn

AU - Teemusk, Alar

AU - Tenywa, Moses M.

AU - Tournebize, Julien

AU - Truu, Jaak

AU - Veber, Gert

AU - Villa, Jorge A.

AU - Zaw, Seint Sann

AU - Mander, Ülo

PY - 2018/3/19

Y1 - 2018/3/19

N2 - Nitrous oxide (N2O) is a powerful greenhouse gas and the main driver of stratospheric ozone depletion. Since soils are the largest source of N2O, predicting soil response to changes in climate or land use is central to understanding and managing N2O. Here we find that N2O flux can be predicted by models incorporating soil nitrate concentration (NO3−), water content and temperature using a global field survey of N2O emissions and potential driving factors across a wide range of organic soils. N2O emissions increase with NO3− and follow a bell-shaped distribution with water content. Combining the two functions explains 72% of N2O emission from all organic soils. Above 5 mg NO3−-N kg−1, either draining wet soils or irrigating well-drained soils increases N2O emission by orders of magnitude. As soil temperature together with NO3− explains 69% of N2O emission, tropical wetlands should be a priority for N2O management.

AB - Nitrous oxide (N2O) is a powerful greenhouse gas and the main driver of stratospheric ozone depletion. Since soils are the largest source of N2O, predicting soil response to changes in climate or land use is central to understanding and managing N2O. Here we find that N2O flux can be predicted by models incorporating soil nitrate concentration (NO3−), water content and temperature using a global field survey of N2O emissions and potential driving factors across a wide range of organic soils. N2O emissions increase with NO3− and follow a bell-shaped distribution with water content. Combining the two functions explains 72% of N2O emission from all organic soils. Above 5 mg NO3−-N kg−1, either draining wet soils or irrigating well-drained soils increases N2O emission by orders of magnitude. As soil temperature together with NO3− explains 69% of N2O emission, tropical wetlands should be a priority for N2O management.

KW - element cycles

U2 - 10.1038/s41467-018-03540-1

DO - 10.1038/s41467-018-03540-1

M3 - Article

VL - 9

JO - Nature Communications

JF - Nature Communications

SN - 2041-1723

M1 - 1135

ER -