Natural and synthetic compounds such as trimethoprim behave as inhibitors of efflux in Gram-negative bacteria.

Research output: Contribution to journalArticle

Authors

Colleges, School and Institutes

Abstract

OBJECTIVES: We hypothesized that small heterocyclic or nitrogen-containing compounds could act as RND efflux pump inhibitors (EPIs). To ascertain possible EPIs, we sought to identify compounds that synergized with substrates of RND efflux pumps for wild-type bacteria and those that overexpress an efflux pump, but had no synergistic activity against strains in which a gene encoding a component of the AcrAB-TolC efflux pump had been inactivated. METHODS: Twenty-six compounds plus L-phenylalanyl-L-arginyl-beta-naphthylamide (PAbetaN) and carbonyl cyanide m-chlorophenylhydrazone (CCCP) were screened by bioassay to identify compounds that synergized with ciprofloxacin for a range of Enterobacteriaceae and Pseudomonas aeruginosa. The MICs of ciprofloxacin, tetracycline, chloramphenicol, erythromycin and ethidium bromide+/-synergizing compounds were determined, and the ability to inhibit the efflux of Hoechst 33342 was measured. RESULTS: Two compounds, trimethoprim and epinephrine, consistently showed synergy with antibiotics for most strains. The combinations did not show synergy for Salmonella enterica serovar Typhimurium in which the AcrAB-TolC efflux pump was inactive. Both compounds inhibited the efflux of Hoechst 33342. CONCLUSIONS: Two compounds, trimethoprim and epinephrine, which are already licensed for use in man, may warrant further analysis as EPIs. The combination of trimethoprim with another antibiotic is a well-used combination in anti-infective chemotherapy, and so combination with another agent, such as a quinolone, may be a viable option and further studies are now required.

Details

Original languageEnglish
Pages (from-to)1215-23
Number of pages9
JournalJournal of Antimicrobial Chemotherapy
Volume65
Issue number6
Publication statusPublished - 1 Jun 2010

Keywords

  • antibiotic resistance, AcrAB-TolC, EPIs