Nano-titanium dioxide bioreactivity with human alveolar type-I-like epithelial cells: investigating crystalline phase as a critical determinant

Research output: Contribution to journalArticle

Authors

  • Sinbad Sweeney
  • Deborah Berhanu
  • Pakatip Ruenraroengsak
  • Andrew J Thorley
  • Teresa D Tetley

Colleges, School and Institutes

Abstract

There can be significant variability between bioreactivity studies of nanomaterials that are apparently the same, possibly reflecting differences in the models used and differing sources of experimental material. In this study, we have generated two crystal forms of titanium dioxide nanoparticles (nano-TiO2), pure anatase and pure rutile to address the hypothesis that the bioreactivity of these nanoparticles with human alveolar epithelium will depend on their crystal phase. We used a human alveolar type-I-like epithelial cell model (TT1; generated in-house from primary human alveolar epithelial type II cells); these cells cover 95% of the alveolar epithelial surface area and are an important target cell for inhaled nanomaterials. Using literature as a guide, we hypothesised that pure anatase nano-TiO2 would display greater bioreactivity with TT1 cells in comparison to pure rutile nano-TiO2. However, we found the profile and pattern of inflammatory mediator release was similar between these two nano-TiO2 formats, although pure rutile treatment caused a small, but consistently greater, response for IL-6, IL-8 and MCP-1. Interestingly, the temporal induction of oxidative stress (increased reactive oxygen species levels and depleted glutathione) varied markedly between the different nano-TiO2 formats. We have shown that a combination of using nanomaterials synthesised specifically for toxicological study and the use of a highly relevant, reproducible human lung cell model, offers a useful approach to delineating the physicochemical properties of nanomaterials that may be important in their cellular reactivity.

Details

Original languageEnglish
Pages (from-to)482-492
Number of pages11
JournalNanotoxicology
Volume9
Issue number4
Early online date19 Aug 2014
Publication statusPublished - May 2015

Keywords

  • Alveolar type-I epithelium, consumer products, crystalline phase, nanotoxicology, titanium dioxide nanotoxicology