Modulation of 11beta-hydroxysteroid dehydrogenase by pro-inflammatory cytokines in osteoblasts: an autocrine switch from glucocorticoid inactivation to activation

Research output: Contribution to journalArticle

Standard

Harvard

APA

Vancouver

Author

Bibtex

@article{659112bc4ec74f43a3f3d88d74c8894b,
title = "Modulation of 11beta-hydroxysteroid dehydrogenase by pro-inflammatory cytokines in osteoblasts: an autocrine switch from glucocorticoid inactivation to activation",
abstract = "Tissue damage by proinflammatory cytokines is attenuated at both systemic and cellular levels by counter anti-inflammatory factors such as corticosteroids. Target cell responses to corticosteroids are dependent on several factors including prereceptor regulation via local steroidogenic enzymes. In particular, two isozymes of 11beta-hydroxysteroid dehydrogenase (11beta-HSD), by interconverting hormonally active cortisol (F) to inactive cortisone (E), regulate the peripheral action of corticosteroids 11beta-HSD1 by converting E to F and 11beta-HSD2 by inactivating F to E. In different in vitro and in vivo systems both 11beta-HSD isozymes have been shown to be expressed in osteoblasts (OBs). Using the MG-63 human osteosarcoma cell-line and primary cultures of human OBs, we have studied the regulation of osteoblastic 11beta-HSD isozyme expression and activity by cytokines and hormones with established roles in bone physiology. In MG-63 cells, interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) potently inhibited 11beta-HSD2 activity (cortisol-cortisone conversion) and messenger RNA (mRNA) levels in a dose-dependent manner while stimulating reciprocal expression of 11beta-HSD1 mRNA and activity (cortisone-cortisol conversion). A similar rise in 11beta-HSD1 reductase activity also was observed in primary cultures of OBs treated with 10 ng/ml TNF-alpha. Pretreatment of MG-63 cells with 0.1 ng/ml IL-1beta resulted in increased cellular sensitivity to physiological glucocorticoids as shown by induction of serum and glucocorticoid-inducible kinase (SGK; relative increase with 50 nM F but no IL-1beta pretreatment 1.12 +/- 0.34; with pretreatment 2.63 +/- 0.50; p <0.01). These results highlight a novel mechanism within bone cells whereby inflammatory cytokines cause an autocrine switch in intracellular corticosteroid metabolism by disabling glucocorticoid inactivation (11beta-HSD2) while inducing glucocorticoid activation (11beta-HSD1). Therefore, it can be postulated that some of the effects of proinflammatory cytokines within bone (e.g., periarticular erosions in inflammatory arthritis) are mediated by this mechanism.",
keywords = "glucocorticoids, cytokines, inflammation, cortisol, 11 beta-hydroxysteroid dehydrogenase, bone, osteoblasts",
author = "Mark Cooper and Iwona Bujalska and L Poyser and Elizabeth Rabbitt and Elizabeth Walker and Rosemary Bland and Michael Sheppard and Martin Hewison and Paul Stewart",
year = "2001",
month = jun,
day = "1",
doi = "10.1359/jbmr.2001.16.6.1037",
language = "English",
volume = "16",
pages = "1037--1044",
journal = "Journal of Bone and Mineral Research",
issn = "0884-0431",
publisher = "American Society for Bone and Mineral Research",
number = "6",

}

RIS

TY - JOUR

T1 - Modulation of 11beta-hydroxysteroid dehydrogenase by pro-inflammatory cytokines in osteoblasts: an autocrine switch from glucocorticoid inactivation to activation

AU - Cooper, Mark

AU - Bujalska, Iwona

AU - Poyser, L

AU - Rabbitt, Elizabeth

AU - Walker, Elizabeth

AU - Bland, Rosemary

AU - Sheppard, Michael

AU - Hewison, Martin

AU - Stewart, Paul

PY - 2001/6/1

Y1 - 2001/6/1

N2 - Tissue damage by proinflammatory cytokines is attenuated at both systemic and cellular levels by counter anti-inflammatory factors such as corticosteroids. Target cell responses to corticosteroids are dependent on several factors including prereceptor regulation via local steroidogenic enzymes. In particular, two isozymes of 11beta-hydroxysteroid dehydrogenase (11beta-HSD), by interconverting hormonally active cortisol (F) to inactive cortisone (E), regulate the peripheral action of corticosteroids 11beta-HSD1 by converting E to F and 11beta-HSD2 by inactivating F to E. In different in vitro and in vivo systems both 11beta-HSD isozymes have been shown to be expressed in osteoblasts (OBs). Using the MG-63 human osteosarcoma cell-line and primary cultures of human OBs, we have studied the regulation of osteoblastic 11beta-HSD isozyme expression and activity by cytokines and hormones with established roles in bone physiology. In MG-63 cells, interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) potently inhibited 11beta-HSD2 activity (cortisol-cortisone conversion) and messenger RNA (mRNA) levels in a dose-dependent manner while stimulating reciprocal expression of 11beta-HSD1 mRNA and activity (cortisone-cortisol conversion). A similar rise in 11beta-HSD1 reductase activity also was observed in primary cultures of OBs treated with 10 ng/ml TNF-alpha. Pretreatment of MG-63 cells with 0.1 ng/ml IL-1beta resulted in increased cellular sensitivity to physiological glucocorticoids as shown by induction of serum and glucocorticoid-inducible kinase (SGK; relative increase with 50 nM F but no IL-1beta pretreatment 1.12 +/- 0.34; with pretreatment 2.63 +/- 0.50; p <0.01). These results highlight a novel mechanism within bone cells whereby inflammatory cytokines cause an autocrine switch in intracellular corticosteroid metabolism by disabling glucocorticoid inactivation (11beta-HSD2) while inducing glucocorticoid activation (11beta-HSD1). Therefore, it can be postulated that some of the effects of proinflammatory cytokines within bone (e.g., periarticular erosions in inflammatory arthritis) are mediated by this mechanism.

AB - Tissue damage by proinflammatory cytokines is attenuated at both systemic and cellular levels by counter anti-inflammatory factors such as corticosteroids. Target cell responses to corticosteroids are dependent on several factors including prereceptor regulation via local steroidogenic enzymes. In particular, two isozymes of 11beta-hydroxysteroid dehydrogenase (11beta-HSD), by interconverting hormonally active cortisol (F) to inactive cortisone (E), regulate the peripheral action of corticosteroids 11beta-HSD1 by converting E to F and 11beta-HSD2 by inactivating F to E. In different in vitro and in vivo systems both 11beta-HSD isozymes have been shown to be expressed in osteoblasts (OBs). Using the MG-63 human osteosarcoma cell-line and primary cultures of human OBs, we have studied the regulation of osteoblastic 11beta-HSD isozyme expression and activity by cytokines and hormones with established roles in bone physiology. In MG-63 cells, interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) potently inhibited 11beta-HSD2 activity (cortisol-cortisone conversion) and messenger RNA (mRNA) levels in a dose-dependent manner while stimulating reciprocal expression of 11beta-HSD1 mRNA and activity (cortisone-cortisol conversion). A similar rise in 11beta-HSD1 reductase activity also was observed in primary cultures of OBs treated with 10 ng/ml TNF-alpha. Pretreatment of MG-63 cells with 0.1 ng/ml IL-1beta resulted in increased cellular sensitivity to physiological glucocorticoids as shown by induction of serum and glucocorticoid-inducible kinase (SGK; relative increase with 50 nM F but no IL-1beta pretreatment 1.12 +/- 0.34; with pretreatment 2.63 +/- 0.50; p <0.01). These results highlight a novel mechanism within bone cells whereby inflammatory cytokines cause an autocrine switch in intracellular corticosteroid metabolism by disabling glucocorticoid inactivation (11beta-HSD2) while inducing glucocorticoid activation (11beta-HSD1). Therefore, it can be postulated that some of the effects of proinflammatory cytokines within bone (e.g., periarticular erosions in inflammatory arthritis) are mediated by this mechanism.

KW - glucocorticoids

KW - cytokines

KW - inflammation

KW - cortisol

KW - 11 beta-hydroxysteroid dehydrogenase

KW - bone

KW - osteoblasts

U2 - 10.1359/jbmr.2001.16.6.1037

DO - 10.1359/jbmr.2001.16.6.1037

M3 - Article

C2 - 11393780

VL - 16

SP - 1037

EP - 1044

JO - Journal of Bone and Mineral Research

JF - Journal of Bone and Mineral Research

SN - 0884-0431

IS - 6

ER -