Modulation of 11beta-hydroxysteroid dehydrogenase by pro-inflammatory cytokines in osteoblasts: an autocrine switch from glucocorticoid inactivation to activation

Mark Cooper, Iwona Bujalska, L Poyser, Elizabeth Rabbitt, Elizabeth Walker, Rosemary Bland, Michael Sheppard, Martin Hewison, Paul Stewart

Research output: Contribution to journalArticle

187 Citations (Scopus)

Abstract

Tissue damage by proinflammatory cytokines is attenuated at both systemic and cellular levels by counter anti-inflammatory factors such as corticosteroids. Target cell responses to corticosteroids are dependent on several factors including prereceptor regulation via local steroidogenic enzymes. In particular, two isozymes of 11beta-hydroxysteroid dehydrogenase (11beta-HSD), by interconverting hormonally active cortisol (F) to inactive cortisone (E), regulate the peripheral action of corticosteroids 11beta-HSD1 by converting E to F and 11beta-HSD2 by inactivating F to E. In different in vitro and in vivo systems both 11beta-HSD isozymes have been shown to be expressed in osteoblasts (OBs). Using the MG-63 human osteosarcoma cell-line and primary cultures of human OBs, we have studied the regulation of osteoblastic 11beta-HSD isozyme expression and activity by cytokines and hormones with established roles in bone physiology. In MG-63 cells, interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) potently inhibited 11beta-HSD2 activity (cortisol-cortisone conversion) and messenger RNA (mRNA) levels in a dose-dependent manner while stimulating reciprocal expression of 11beta-HSD1 mRNA and activity (cortisone-cortisol conversion). A similar rise in 11beta-HSD1 reductase activity also was observed in primary cultures of OBs treated with 10 ng/ml TNF-alpha. Pretreatment of MG-63 cells with 0.1 ng/ml IL-1beta resulted in increased cellular sensitivity to physiological glucocorticoids as shown by induction of serum and glucocorticoid-inducible kinase (SGK; relative increase with 50 nM F but no IL-1beta pretreatment 1.12 +/- 0.34; with pretreatment 2.63 +/- 0.50; p <0.01). These results highlight a novel mechanism within bone cells whereby inflammatory cytokines cause an autocrine switch in intracellular corticosteroid metabolism by disabling glucocorticoid inactivation (11beta-HSD2) while inducing glucocorticoid activation (11beta-HSD1). Therefore, it can be postulated that some of the effects of proinflammatory cytokines within bone (e.g., periarticular erosions in inflammatory arthritis) are mediated by this mechanism.
Original languageEnglish
Pages (from-to)1037-1044
Number of pages8
JournalJournal of Bone and Mineral Research
Volume16
Issue number6
DOIs
Publication statusPublished - 1 Jun 2001

Keywords

  • glucocorticoids
  • cytokines
  • inflammation
  • cortisol
  • 11 beta-hydroxysteroid dehydrogenase
  • bone
  • osteoblasts

Fingerprint

Dive into the research topics of 'Modulation of 11beta-hydroxysteroid dehydrogenase by pro-inflammatory cytokines in osteoblasts: an autocrine switch from glucocorticoid inactivation to activation'. Together they form a unique fingerprint.

Cite this