Model-based evaluation of the genetic impacts of farm-escaped Atlantic salmon on wild populations

Research output: Contribution to journalArticle

Standard

Model-based evaluation of the genetic impacts of farm-escaped Atlantic salmon on wild populations. / Bradbury, Ir; Duffy, S; Lehnert, Sj; Jóhannsson, R; Fridriksson, Jh; Castellani, M; Burgetz, I; Sylvester, E; Messmer, A; Layton, K; Kelly, N; Dempson, Jb; Fleming, Ia.

In: Aquaculture Environment Interactions, Vol. 12, 13.02.2020, p. 45-59.

Research output: Contribution to journalArticle

Harvard

Bradbury, I, Duffy, S, Lehnert, S, Jóhannsson, R, Fridriksson, J, Castellani, M, Burgetz, I, Sylvester, E, Messmer, A, Layton, K, Kelly, N, Dempson, J & Fleming, I 2020, 'Model-based evaluation of the genetic impacts of farm-escaped Atlantic salmon on wild populations', Aquaculture Environment Interactions, vol. 12, pp. 45-59. https://doi.org/10.3354/aei00346, https://doi.org/10.3354/aei00346

APA

Bradbury, I., Duffy, S., Lehnert, S., Jóhannsson, R., Fridriksson, J., Castellani, M., Burgetz, I., Sylvester, E., Messmer, A., Layton, K., Kelly, N., Dempson, J., & Fleming, I. (2020). Model-based evaluation of the genetic impacts of farm-escaped Atlantic salmon on wild populations. Aquaculture Environment Interactions, 12, 45-59. https://doi.org/10.3354/aei00346, https://doi.org/10.3354/aei00346

Vancouver

Author

Bradbury, Ir ; Duffy, S ; Lehnert, Sj ; Jóhannsson, R ; Fridriksson, Jh ; Castellani, M ; Burgetz, I ; Sylvester, E ; Messmer, A ; Layton, K ; Kelly, N ; Dempson, Jb ; Fleming, Ia. / Model-based evaluation of the genetic impacts of farm-escaped Atlantic salmon on wild populations. In: Aquaculture Environment Interactions. 2020 ; Vol. 12. pp. 45-59.

Bibtex

@article{23ea133fac894852b1297e7d2fde50ca,
title = "Model-based evaluation of the genetic impacts of farm-escaped Atlantic salmon on wild populations",
abstract = "Genetic interactions (i.e. hybridization) between wild and escaped Atlantic salmon Salmo salar from aquaculture operations have been widely documented, yet the ability to incorporate predictions of risk into aquaculture siting advice has been limited. Here we demonstrate a model-based approach to assessing these potential genetic interactions using a salmon aquaculture expansion scenario in southern Newfoundland as an example. We use an eco-genetic individual-based Atlantic salmon model (IBSEM) parameterized for southern Newfoundland populations, with regional environmental data and field-based estimates of survival, to explore how the proportion of escapees relative to the size of wild populations could potentially influence genetic and demographic changes in wild populations. Our simulations suggest that both demographic decline and genetic change are predicted when the percentage of escapees in a river relative to wild population size is equal to or exceeds 10% annually. The occurrence of escapees in southern Newfoundland rivers under a proposed expansion scenario was predicted using river and site locations and models of dispersal for early and late escapees. Model predictions of escapee dispersal suggest that under the proposed expansion scenario, the number of escapees is expected to increase by 49% and the highest escapee concentrations will shift westward, consistent with the location of proposed expansion (20 rivers total >10% escapees, max 24%). Our results identify susceptible rivers and potential impacts predicted under the proposed aquaculture expansion scenario and illustrate how model-based predictions of both escapee dispersal and genetic impacts can be used to inform both aquaculture management decisions and wild salmon conservation.",
keywords = "Hybridization, Atlantic salmon, Aquaculture, Management, Newfoundland, individual based modelling, Eco-genetic modelling",
author = "Ir Bradbury and S Duffy and Sj Lehnert and R J{\'o}hannsson and Jh Fridriksson and M Castellani and I Burgetz and E Sylvester and A Messmer and K Layton and N Kelly and Jb Dempson and Ia Fleming",
year = "2020",
month = feb
day = "13",
doi = "10.3354/aei00346",
language = "English",
volume = "12",
pages = "45--59",
journal = "Aquaculture Environment Interactions",
issn = "1869-215X",
publisher = "Inter Research",

}

RIS

TY - JOUR

T1 - Model-based evaluation of the genetic impacts of farm-escaped Atlantic salmon on wild populations

AU - Bradbury, Ir

AU - Duffy, S

AU - Lehnert, Sj

AU - Jóhannsson, R

AU - Fridriksson, Jh

AU - Castellani, M

AU - Burgetz, I

AU - Sylvester, E

AU - Messmer, A

AU - Layton, K

AU - Kelly, N

AU - Dempson, Jb

AU - Fleming, Ia

PY - 2020/2/13

Y1 - 2020/2/13

N2 - Genetic interactions (i.e. hybridization) between wild and escaped Atlantic salmon Salmo salar from aquaculture operations have been widely documented, yet the ability to incorporate predictions of risk into aquaculture siting advice has been limited. Here we demonstrate a model-based approach to assessing these potential genetic interactions using a salmon aquaculture expansion scenario in southern Newfoundland as an example. We use an eco-genetic individual-based Atlantic salmon model (IBSEM) parameterized for southern Newfoundland populations, with regional environmental data and field-based estimates of survival, to explore how the proportion of escapees relative to the size of wild populations could potentially influence genetic and demographic changes in wild populations. Our simulations suggest that both demographic decline and genetic change are predicted when the percentage of escapees in a river relative to wild population size is equal to or exceeds 10% annually. The occurrence of escapees in southern Newfoundland rivers under a proposed expansion scenario was predicted using river and site locations and models of dispersal for early and late escapees. Model predictions of escapee dispersal suggest that under the proposed expansion scenario, the number of escapees is expected to increase by 49% and the highest escapee concentrations will shift westward, consistent with the location of proposed expansion (20 rivers total >10% escapees, max 24%). Our results identify susceptible rivers and potential impacts predicted under the proposed aquaculture expansion scenario and illustrate how model-based predictions of both escapee dispersal and genetic impacts can be used to inform both aquaculture management decisions and wild salmon conservation.

AB - Genetic interactions (i.e. hybridization) between wild and escaped Atlantic salmon Salmo salar from aquaculture operations have been widely documented, yet the ability to incorporate predictions of risk into aquaculture siting advice has been limited. Here we demonstrate a model-based approach to assessing these potential genetic interactions using a salmon aquaculture expansion scenario in southern Newfoundland as an example. We use an eco-genetic individual-based Atlantic salmon model (IBSEM) parameterized for southern Newfoundland populations, with regional environmental data and field-based estimates of survival, to explore how the proportion of escapees relative to the size of wild populations could potentially influence genetic and demographic changes in wild populations. Our simulations suggest that both demographic decline and genetic change are predicted when the percentage of escapees in a river relative to wild population size is equal to or exceeds 10% annually. The occurrence of escapees in southern Newfoundland rivers under a proposed expansion scenario was predicted using river and site locations and models of dispersal for early and late escapees. Model predictions of escapee dispersal suggest that under the proposed expansion scenario, the number of escapees is expected to increase by 49% and the highest escapee concentrations will shift westward, consistent with the location of proposed expansion (20 rivers total >10% escapees, max 24%). Our results identify susceptible rivers and potential impacts predicted under the proposed aquaculture expansion scenario and illustrate how model-based predictions of both escapee dispersal and genetic impacts can be used to inform both aquaculture management decisions and wild salmon conservation.

KW - Hybridization

KW - Atlantic salmon

KW - Aquaculture

KW - Management

KW - Newfoundland

KW - individual based modelling

KW - Eco-genetic modelling

UR - http://www.scopus.com/inward/record.url?scp=85080894511&partnerID=8YFLogxK

U2 - 10.3354/aei00346

DO - 10.3354/aei00346

M3 - Article

VL - 12

SP - 45

EP - 59

JO - Aquaculture Environment Interactions

JF - Aquaculture Environment Interactions

SN - 1869-215X

ER -