Microtubules Are a Target for Self-Incompatibility Signaling in Papaver Pollen

Research output: Contribution to journalArticlepeer-review

52 Citations (Scopus)
167 Downloads (Pure)

Abstract

Perception and integration of signals into responses is of crucial importance to cells. Both the actin and microtubule cytoskeleton are known to play a role in mediating diverse stimulus responses. Self-incompatibility (SI) is an important mechanism to prevent self-fertilization. SI in Papaver rhoeas triggers a Ca2+-dependent signaling network to trigger programmed cell death (PCD), providing a neat way to inhibit and destroy incompatible pollen. We previously established that SI stimulates F-actin depolymerization and that altering actin dynamics can push pollen tubes into PCD. Very little is known about the role of microtubules in pollen tubes. Here, we investigated whether the pollen tube microtubule cytoskeleton is a target for the SI signals. We show that SI triggers very rapid apparent depolymerization of cortical microtubules, which, unlike actin, does not reorganize later. Actin depolymerization can trigger microtubule depolymerization but not vice versa. Moreover, although disruption of microtubule dynamics alone does not trigger PCD, alleviation of SI-induced PCD by taxol implicates a role for microtubule depolymerization in mediating PCD. Together, our data provide good evidence that SI signals target the microtubule cytoskeleton and suggest that signal integration between microfilaments and microtubules is required for triggering of PCD.
Original languageEnglish
Pages (from-to)1358-1367
Number of pages10
JournalPlant Physiology
Volume146
Issue number3
DOIs
Publication statusPublished - 1 Mar 2008

Fingerprint

Dive into the research topics of 'Microtubules Are a Target for Self-Incompatibility Signaling in Papaver Pollen'. Together they form a unique fingerprint.

Cite this