Mechanisms of Surface Charge Modification of Carbonates in Aqueous Electrolyte Solutions

Research output: Contribution to journalArticle

Authors

  • Maryam H. Derkani
  • Ashleigh J. Fletcher
  • Maxim Fedorov
  • Wael Abdallah
  • Bastian Sauerer
  • James Anderson

Colleges, School and Institutes

Abstract

The influence of different types of salts (NaCl, CaCl 2 , MgCl 2 , NaHCO 3 , and Na 2 SO 4 ) on the surface characteristics of unconditioned calcite and dolomite particles, and conditioned with stearic acid, was investigated. This study used zeta potential measurements to gain fundamental understanding of physico-chemical mechanisms involved in surface charge modification of carbonate minerals in the presence of diluted salt solutions. By increasing the salt concentration of divalent cationic salt solution (CaCl 2 and MgCl 2 ), the zeta potential of calcite particles was altered, resulting in charge reversal from negative to positive, while dolomite particles maintained positive zeta potential. This is due to the adsorption of potential-determining cations (Ca 2+ and Mg 2+ ), and consequent changes in the structure of the diffuse layer, predominantly driven by coulombic interactions. On the other hand, chemical adsorption of potential-determining anions (HCO −3 and SO 2−4 ) maintained the negative zeta potential of carbonate surfaces and increased its magnitude up to 10 mM, before decreasing at higher salt concentrations. Physisorption of stearic acid molecules on the calcite and dolomite surfaces changed the zeta potential to more negative values in all solutions. It is argued that divalent cations (Ca 2+ and Mg 2+ ) would result in positive and neutral complexes with stearic acid molecules, which may result in strongly bound stearic acid films, whereas ions resulting in negative mineral surface charges (SO 2−4 and HCO −3 ) will cause stearic acid films to be loosely bound to the carbonate mineral surfaces. The suggested mechanism for surface charge modification of carbonates, in the presence of different ions, is changes in both distribution of ions in the diffuse layer and its structure as a result of ion adsorption to the crystal lattice by having a positive contribution to the disjoining pressures when changing electrolyte concentration. This work extends the current knowledge base for dynamic water injection design by determining the effect of salt concentration on surface electrostatics.

Details

Original languageEnglish
Article number62
JournalColloids and Interfaces
Volume3
Issue number4
Publication statusPublished - 31 Oct 2019

Keywords

  • calcite, dolomite, stearic acid, zeta potential, electric double layer, disjoining pressure, wettability mechanism, low salinity waterflooding